首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
王飞 《考试周刊》2012,(43):64-64
已知a,b,c是△ABC的三条边,比较大小(a+b+c)2____4(ab+bc+ca).这道题的解答可以用特殊值法.取a=b=c=1,得(a+b+c)2=9,4(ab+bc+ca)=12,所以(a+b+c)2〈4(ab+bc+ca).将这道题稍微变形,就是设a,b,c为△ABC的三边,求证:  相似文献   

2.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

3.
正(数学(高二上册))达标训练二填空题第一题是这样的:已知a,b,c是△ABC的三条边,比较大小(a+b+c)24(ab+bc+ca).这道题的解答可以用特殊值法.取a=b=c=1,得(a+b+c)2=9,4(ab+bc+ca)=12,所以(a+b+c)24(ab+bc+ca).将这道题稍微变形,就是全日制普通高级中学教科书(实验修订本·必修)数学第二册(上)第31页B组题的第6题:设a,b,c为△ABC的三边,求证:a2+b2+c22(ab+bc+ca).这道题的解法紧紧围绕三角形的边的特征,依据不同的思维,不同的入口结合不等式证明的不同方法,可以得到不同的证法.并且依据已经证明的结论,还可以进行引申.  相似文献   

4.
1问题呈现设a,b,c为正实数,且a+b+c=3,求证:√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.2问题的证明与推广证明:由已知条件结合均值不等式可得√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b=√ab/3+a+√bc/3+b+√ca/3+c≤√ab/44√ a+√bc/44√ b+√ca/44√c=8√a3b4/2+8√b3c4/2+8√c3a4/2≤1+3a+4b/16+1+3b+4c/16+1+3c+4a/16=3+7 (a+b+c)/16=3+7×3/16=3/2,当且仅当a=b=c=1时取等号,则√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.  相似文献   

5.
<数学通报>2005年8月号1570题为: 已知a、b、c∈R ,求证: a5/b3 a5/c3 c5/a3≥a4/b2 b4/c2 c4/a2≥a3/b b3/c c3/a≥a2 62 c2≥ab bc ca. 由于该题具有很好的轮换对称性,给人一种美的享受,因而笔者尝试推广.  相似文献   

6.
一道IMO预选题的推广   总被引:1,自引:0,他引:1  
第37届(1996年)IMO中有如下一道预选题:若a,b,c,∈(0,+∞),且abc=1.试证: (ab)/(a5+b5+ab)+(bc)/(b5+c5+bc)+(ca)/(c5+a5+ca)≤1.  相似文献   

7.
人教版"不等式"里有一道习题:证明不等式"a2+b2+c2≥ab+bc+ca".证明过程如下:因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,所以2a2+2b2+2c2≥2ab+2bc+2ca,即a2+b2+c2≥ab+bc+ca."a2+b2+c2≥ab+bc+ca"是一个很重要的不等式,有着广泛的应用.  相似文献   

8.
第42届国数学奥林匹克试题第2题是:对所有正实数a,b,c,证明(a)/(a2+8bc)+(b)/(b2+8ca)+(c)/(c2+8ab)≥1.文[1]采用文[3][4]的方法给出其推广为:若a,b,c∈R+,λ≥8,则(a)/(a2+λbc)+(b)/(b2+λca)+(c)/(c2+λab)≥(3)/(1+λ)(1).文[2]给出了(1)式的简证,本文进一步把(1)式推广为更一般的形式:  相似文献   

9.
解法4:由题设,知 u= (a+b+ c)^2- 2(ab+bc+ca) +λabc = 1-2(ab+bc+ca)+λabc.  相似文献   

10.
第42届IMO第2题是对所有正实数a,b,c,证明本文将其推广为对所有正实数a,b,c,及λ≥8,证明证明不等式左边可化为令bc/a2=x,ca/b2=y,ab/c2=z,则 xyz=1.从而只要证明对于满足xyz=1的一切正  相似文献   

11.
文[1]介绍了涉及三角形高线的不等式: r(5R-r)/R2≤h2a/bc+h2b/ca+h2c/ab≤(R+r)2/R2① 文[2]在①的基础上,建立的如下不等式: bc/h2a+ca/h2b+ab/h2c≥4 ② 文[3]建立了比②更强的如下不等式: bc/t2a+ca/t2b+ab/t2c≥4 ③  相似文献   

12.
代数式的恒等变形 ,是中学数学的重要内容 ,是学好数学的一项基本功 .由于等式的类型 ,形式的多样性 ,因此必须掌握丰富的基础知识 ,采用灵活多变的技能技巧 ,对等式进行变形 ,下面根据题的类型 ,举例说明代数式恒等变形的常用方法 .1 因式分解法例 1 求证 :a3 (b c) b3 (c a) c3 (a b) abc(a b c) =(ab bc ca) (a2 b2 c2 ) .分析 等式左边较繁 ,选择从左到右证法 ,对左边进行变形整理 ,考虑到右边是两个因式的乘积 ,因此将左边进行因式分解 .证明 左边 =a3 b a3 c b3 c b3 a c3 a c3 b a2 bc ab2 c abc2 .=a2 (ab bc ca) b…  相似文献   

13.
第42届国际数学奥赛题第2题是: 对所有正实数a、b、c,证明:a/(√a2 8bc) b/(√b2 8ca) c/(√c2 8ab)≥1①  相似文献   

14.
赛题呈现 已知a,b,c是正实数,求证:a3/c(a2 + bc) +b3/a(b2 + ca) + c3/b(c2 + ab)≥ 3/2. 这是2009年韩国数学奥林匹克竞赛的一道不等式证明题,文[1]给出了这道试题的一个证明和推广.笔者对这个结构优美、内涵丰富的齐次分式不等式再作进一步探究,供参考.  相似文献   

15.
第36届IMO第2题,可推广得如下四个命题: 命题1 设a、b、c∈R~ ,且abc=1,则1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥1/2(bc ca ab)(1),当且仅当a=b=c=1时等式成立。 证 易知(2)等价于b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥1/2(bc ca ab)(2)。由平均值不等式可得: b~2c~2 (1/4)a~2(b c)~2≥abc(b C), ∴b~2c~2≥abc(b c)-(1/4)a~2(b c)~2,  相似文献   

16.
已知a/1+9bc+k(b-c)2+b/1+9ca+k(c-a)2+c/1+9ab+k(a-b)2 ≥1/2①,对满足a+b+c=1的所有非负实数a,b,c都成立,求实数k的最大值. 这是2014年日本数学奥林匹克高中决赛第5题,在式①中,令a=b=1/2,c=0,可得k≤4.关于该题的解答,可参考文[1],此处笔者拟给出式①的一个推广.  相似文献   

17.
第42届IMO第2题:对所有正实数a,b,c,证明:a/(√a2+8bc)+b/√(b2+8ca)/+c/√(c2+8ab)≥1.  相似文献   

18.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

19.
37.已知正方形ABCD与正方形BEFG相连,且正方形ABCD的边长为a,求S△AFC.解:如图,连接BF,易证得AC∥BF.过点B、F分别作AC的垂线,垂足分别为M、N,则BM=FN.显然,则有S△AFC=S△ABC=12a2.38.若a,b,c∈R ,ab bc ca=1,求证:aa #!1 a2 b #!b1 b2 c #!c1 c2≤1.证明:分母有理化,得a$#!1 a2-a% b$#!1 b2-b% c$#!1 c2-c%≤1.上式等价于a#!1 a2 b#!1 b2 c#!1 c2≤1 (a2 b2 c2).(*)注意到1 a2=ab bc ca a2=(c a)(a b),1 b2=ab bc ca b2=(a b)(b c),1 c2=ab bc ca c2=(b c)(c a).那么,应用二元均值不等式,有a#!1 a2 b#"1 b2 c##1 c2=a#!(…  相似文献   

20.
第三届陈省身杯数学奥林匹克第6题: 已知实数a,b,c>1,且a+b+c =9,试证明:√ab+bc+ca≤√a+√b+√c. 贵刊2014年第12期文“对一道奥林匹克数学竞赛试题的证明及思考”中,把这个不等式加强为:正实数a,b,c≥k,且a+b+c=9,试证明:√ab+bc+ca≤√a+√b+√c该文验证了k=1/2的正确性,但是文末指出最小的k值如何求解呢?笔者试图找出最小的k值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号