首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examines the use of engineering design to facilitate science reasoning in high-needs, urban classrooms. The Design for Science unit utilizes scaffolds consistent with reform science instruction to assist students in constructing a design solution to satisfy a need from their everyday lives. This provides a meaningful context in which students could reason scientifically. Eighth grade students from two urban schools participated in the unit. Both schools contained large percentages of racial/ethnic minority and economically disadvantaged students. Students demonstrated statistically significant improvement on a paper-and-pencil, multiple-choice pre and post assessment. The results compare favorably with both a high-quality inquiry science unit and a traditional textbook curriculum. Implications for the use of design-based curricula as a viable alternative for teaching science reasoning in high-needs, urban settings are discussed.
Eli M. SilkEmail:
  相似文献   

2.
Lifelong science literacy begins with attitudes and interests established early in childhood. The use of trade books (i.e., a literary work intended for sale to the general public) in North American school classrooms to support the development of science literacy invites an examination of the quality of science content disseminated to students. A total of 116 trade books were examined to: (a) determine the degree to which science trade books complement expected science knowledge outcomes outlined in school curricula, and (b) compare trade book content to the goals of scientific literacy. Analysis across four science topics, Dinosaurs, Space, Inheritance, and Growth and Life Properties, revealed that this body of children’s literature is inconsistent in its coverage of curricular goals and elements of scientific literacy. Because trade books represent children’s first exposure to science, these shortcomings should be addressed if these books are to be maximally effective in promoting science literacy. Implications for using trade books in the classroom are discussed.
Hayli StockEmail:
  相似文献   

3.
This paper focuses on content-based and pedagogical instructors’ use of cogenerative dialogues to improve instructional practice and to evaluate program effectiveness in a professional development program for high school chemistry teachers. We share our research findings from using cogenerative dialogues as an evaluative tool for general assessment of various program-related issues. We discuss how engaging students in cogenerative dialogues improved teaching and learning in chemistry and chemistry education courses. This research provides insights and direction for improving content-based professional development programs for science teachers and the learning experiences of high school science students. Cogenerative dialogue has the potential to expand evaluation methodologies that will position participants more centrally in not only the collection of data, but also the analysis of these data to catalyze transformative practices in educational programs.
Sonya N. MartinEmail:
  相似文献   

4.
In his December editorial on Michael Reiss, Kenneth Tobin (Cult Stud Sci Educ 3:793–798, 2008), raises some very important questions for science and science teachers regarding science education and the teaching of creationism in the classroom. I agree with him that students’ creationist ideologies should be treated not as misconceptions but as worldviews. Because of creationism’s peculiarly strong political links though, I argue that such discussion must address three critical and interconnected issues, including the uncertain state of teaching evolution in public schools nationally, the political convergence of the creationist political beliefs with bigoted worldviews, and creationism’s inherent contrariness to science and human progress. I suggest that we as science educators therefore not consider all sides to be equally right and to instead take side against the politics of creationism. I also argue that we need much more serious discussion on how to better teach science to students who hold creationist worldviews, and that science educators such as Reiss need to be part of that.
Konstantinos AlexakosEmail:

Konstantinos Alexakos   is an assistant professor in the School of Education at Brooklyn College (CUNY). He is a former New York City high school science teacher and a former NYC transit worker. His research interests include sociocultural issues especially fictive kinships among minority science students and perseverance and success.  相似文献   

5.
Dr. Sreyashi Jhumki Basu was a scholar committed to equity and social justice in science education who passed away in December 2008. In this essay, I describe Jhumki’s research and the call to action her life’s work has laid out for the science education community. In particular, I draw attention to the role of critical science agency in learning and the democratic science pedagogy model that Jhumki developed to support students in crafting such agency.
Angela Calabrese BartonEmail:
  相似文献   

6.
Science educators have yet to identify ways to enable inner city African American high school students to experience success in science. In this paper, we argue that understanding the ways in which cultural practices from fields outside of school mediate what happens inside classrooms and contribute to the learning of students is crucial to addressing current disparities in science performance. Specifically, we explore the significance of movement expressiveness dispositions to the lives and the learning of economically disadvantaged African American youth. These particular dispositions have been repeatedly observed in our research, and they can be important resources for the creation of individual emotional energy, collective solidarity, and heightened engagement in learning activities since they provide resources for the (re)shaping of identity. Thus movement expressiveness dispositions hold potential for transforming the teaching and learning of these students.
Gale SeilerEmail:
  相似文献   

7.
A lack of congruency between the teaching and learning of science and the student’s personal worlds has long been recognised by the international science education community as an issue deserving space in the research agenda. The purpose of this study was to explore the diversity of student reactions when subcultures such as family, community peers, and personal worldviews are considered along side the subculture of school science. Two-hundred and fifty students from urban and provincial schools in the northeastern region of Colombia (South America) participated. From this group, 18 students were interviewed. It was observed that students adopt a compartmentalisation of knowledge that is evident as both an avoiding strategy in the classroom and as a mechanism to differentiate between the natural world of their everyday situations and the one portrayed by a Westernised science instruction in the classroom. The findings reflect how multiple worldviews correlate with student frameworks as implanted by school science.
William Medina-JerezEmail:
  相似文献   

8.
Since many teachers and students recognize other kinds of knowledge (faith) based on other ways of knowing, consideration of these realities is appropriate for the science education community. Understanding the multitude of ways that clergy view relationships between science and faith (i.e. alternative ways of knowing) would assist in understanding various ways that people address complex issues arising from ideas about science and faith. We administered a questionnaire composed of multiple-choice and short answer items to 63 United Methodist ministers. Findings included (1) that formal, organized faith contexts (e.g. church services) serve as informal science education opportunities, (2) participants demonstrated considerable diversity regarding the types of relationships developed between science and faith, and (3) participants recognized a need exists for better understandings of science and its relationship to faith for them, their colleagues, and their congregations.
Daniel L. Dickerson (Corresponding author)Email:
Karen R. DawkinsEmail:
John E. PenickEmail:
  相似文献   

9.
The purpose of this study is to understand in what ways a technology-enhanced learning (TEL) environment supports learning about the causes of the seasons. The environment was designed to engage students in five cognitive phases: Contextualisation, Sense making, Exploration, Modeling, and Application. Seventy-five high school students participated in this study and multiple sources of data were collected to investigate students’ conceptual understandings and the interactions between the design of the environment and students’ alternative conceptions. The findings show that the number of alternative conceptions held by students were reduced except for the incorrect concepts of “the length of sunshine” and “the distance between the sun and the earth.” The percentage of partial explanations held by students was also reduced from 60.5 to 55.3% and the percentage of students holding complete scientific explanations after using Lesson Seasons rose from 2.6 to 15.8%. While some students succeeded in modeling their science concepts closely to the expert’s concepts, some failed to do so after the invention. The unsuccessful students could not remediate their alternative conceptions without explicit guidance and scaffolding. Future research can then be focused on understanding how to provide proper scaffoldings for removing some alternative concepts which are highly resistant to change.
Fu-Kwun HwangEmail:
  相似文献   

10.
This survey study explored high school science teachers’ challenges and needs specific to their growing English language learning (ELL) student population. Thirty-three science teachers from 6 English as a Second language (ESL)-center high schools in central Virginia participated in the survey. Issues surveyed were (a) strategies used by science teachers to accommodate ELL students’ special needs, (b) challenges they experienced, and (c) support and training necessary for effective ELL instruction. Results suggest that language barriers as well as ELL students’ lack of science foundational knowledge challenged teachers most. Teachers perceived that appropriate instructional materials and pedagogical training was most needed. The findings have implications for science teacher preservice and inservice education in regard to working with language minority students.
Jacqueline T. McDonnoughEmail:
  相似文献   

11.
12.
The article explores the role of immigrant parents in middle school science as both teachers and learners as part of an urban middle school curriculum, the Linking in Food and the Environment (LiFE) program. The curriculum engaged parents as partners with science teachers to teach science through food. Over a 2-year period, parents attended a series of bilingual workshops, collaborated with classroom teachers, managed activities, guided student inquiry, and assisted in classroom management. The following study analyzes the role of culture, language, and identity as four mothers navigated their position as ‘insiders’ in a science classroom.
Sumi HagiwaraEmail:
  相似文献   

13.
This study describes how teachers use their personal knowledge of a school district and their students to cope with teaching under stressful situations associated with economic, social, and institutional factors. The 3 teachers dealt with these issues in unique ways, focusing on helping students to overcome negative perceptions, value the importance of an education, and build strong relationships. A model of multicultural science professional development is proposed that complements the strengths that these teachers have. A task for science educators working with teachers and administration in schools and districts that are “critically low performing” is to support everyone in implementing pedagogical methods aimed at empowerment, social justice, and high achievement for all students.
Felicia M. MooreEmail:
  相似文献   

14.
This article reviews the work of Jong-Hsiang Yang in science education and his efforts in creating a research culture in Taiwan. Following in Yang’s footprints, the rebuilding of science education, implementing a new science curriculum, and gaining the academic status of science education, we go through the important years of the development of science education in Taiwan. His leadership in introducing interpretive research methods and expanding international studies catalyzed profound changes to science education research in Taiwan.
Sheau-Wen LinEmail:
  相似文献   

15.
Indigenous knowledge and science revisited   总被引:3,自引:3,他引:0  
This article provides a guided tour through three diverse cultural ways of understanding nature: an Indigenous way (with a focus on Indigenous nations in North America), a neo-indigenous way (a concept proposed to recognize many Asian nations’ unique ways of knowing nature; in this case, Japan), and a Euro-American scientific way. An exploration of these three ways of knowing unfolds in a developmental way such that some key terms change to become more authentic terms that better represent each culture’s collective, yet heterogeneous, worldview, metaphysics, epistemology, and values. For example, the three ways of understanding nature are eventually described as Indigenous ways of living in nature, a Japanese way of knowing seigyo-shizen, and Eurocentric sciences (plural). Characteristics of a postcolonial or anti-hegemonic discourse are suggested for science education, but some inherent difficulties with this discourse are also noted.
Masakata OgawaEmail:
  相似文献   

16.
17.
In this response to commentaries by Ali Sammel, Jhumki Basu and Alberto Rodriguez, I present my perspective on three important issues raised by the commentators. These issues relate to the role of a researcher in her field settings and society, the critique of science and science education as oppressive dominant discourses, and co-opting participants as researchers. I argue that researchers should work actively for progressive change in discursive fields such as educational research, in which they are firmly embedded rather than playing an interventionist role in field settings where their discursive positionality maybe temporary and not that rooted. Regarding the critique of science and science education, my response favors a perspective wherein an understanding of the marginalization and oppression of non-western communities caused by western science and science education is counterbalanced by an appreciation of the ways in which marginalized communities can use science and science education for affecting progressive change. Lastly, I recognize the value of co-opting participants in writing and communication of research.
Ajay SharmaEmail:
  相似文献   

18.
This article focuses upon programs for undergraduate women in science and engineering, which are a strategic research site in the study of gender, science, and higher education. The design involves both quantitative and qualitative approaches, linking theory, method, questions, and analyses in ways not undertaken previously. Using a comprehensive, quantitative, cross-institutional, and longitudinal method, two extreme groups of programs are distinguished: those associated with the “most successful” and “least successful” outcomes in undergraduate degrees awarded to women in science and engineering. Qualitative analyses of interview data with key players in the programs in these two groups point to ways in which definitions of issues, problems, and solutions diverge (as well as converge), and thus to conceptual underpinnings that have important real-life consequences in these organizational settings of higher education. The programs that regard issues, problems, and solutions of women in science and engineering as rooted in “institutional/structural-centered,” as opposed to “individual/student-centered,” perspectives are associated with the most positive outcomes in undergraduate degrees awarded to women in science and engineering.
Mary Frank FoxEmail:
  相似文献   

19.
This article sets out to examine how school science activities can encourage students’ participation while supporting a specific science content. One ordinary class with 12-year-old students was chosen and their regular classroom work was studied without intervention and with a minimum of interference. Lessons were video filmed, transcribed and analyzed focussing on the participants’ speech acts. It was found that students’ initiatives and experiences were important parts of their participation. The results show how students’ participation was orchestrated with a science content by means of four different kinds of activities. The activities are called ‘individual inventory of experiences’, ‘building a common platform of experiences’, ‘sharing new experiences’ and ‘concluding a common platform’. The activities form a foundation for participation in human biology topics. For example, to ‘build a common platform of experiences’ seems to level out students’ different prerequisites for participating in subsequent tasks. Furthermore, to ‘conclude a common platform’ implied a checkpoint of the shared new experiences. The activities support students’ tentative use of scientific words as well as their learning of what counts as knowledge in the school science setting. However, it can be questioned if the time spent on each separate activity is necessary or if similar achievements could be made even if some activities were integrated. The question is open for further research.
Mattias LundinEmail:
  相似文献   

20.
Our 5-year professional development intervention is designed to promote elementary teachers’ knowledge, beliefs, and practices in teaching science, along with English language and mathematics for English Language Learning (ELL) students in urban schools. In this study, we used an end-of-year questionnaire as a primary data source to seek teachers’ perspectives on our intervention during the first year of implementation. Teachers believed that the intervention, including curriculum materials and teacher workshops, effectively promoted students’ science learning, along with English language development and mathematics learning. Teachers highlighted strengths and areas needing improvement in the intervention. Teachers’ perspectives have been incorporated into our on-going intervention efforts and offer insights into features of effective professional development initiatives in improving science achievement for all students.
Scott LewisEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号