首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

2.
利用均值不等式求最值要注意以下三点:(1)“正”指均值不等式成立的前提条件是a,b∈R~ ,即a,b为正数;(2)“定”指用均值不等式时需要通过补项、拆项、平衡系数等方法凑成和(或积)为定值;(3)“等”指用均值不等式求最值时,一定  相似文献   

3.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

4.
不等式a b≥2ab(a、b∈R )(当且仅当a=b时等号成立)a b2≥ab(a、b∈R )(当且仅当a=b是等号成立),其中a b2、ab分别是a与b的算术平均数、几何平均数,故简称其为“均值”不等式或“均值”定理.另外均值不等式可推广为三个(或多个)变元的形式,即:a b c≥33abc(a、b、c∈R )(当且仅当a=b=c时等号成立)a1 a2 a3 … an≥na1a2a3…an(a1,a2,a3,…,an∈R )(当且仅当a1=a2=a3=…=an时等号成立)均值不等式的功能除用于比较数的大小及证明不等式外,主要用于求函数的最值,在使用均值不等式求最值时必须具有三个缺一不可条件,即为:一正:诸元皆正;二定:…  相似文献   

5.
高中数学第二册上§6.2均值不等式定理:如果a、b是正数,那么a+b/2≥ab~(1/2)(当且仅当a=b时取“=”号),它有如下推广:如果a1,a2,…,an(n ∈N),n≥2)均为正数,那么(当且仅当a1=a2=…=an时取“=”号).  相似文献   

6.
直接求解不等式问题困难较大时,可适当的将原式拆、添、配,运用此技巧便可化难为易,化繁为简,提高解题速度,激发学生的数学学习兴趣.本文举例加以说明. 1.拆的技巧例1 求y=x2+(3/x)(x>0)的最小值. 分析:本题是利用基本不等式求最值的问题,而应用a+b+c≥3 3(abc)求最值时,应考虑到三个正数的积(和)为常数,且三数相等时它们的和(积)取最小(大)值.因此需将3/x平均拆  相似文献   

7.
数学科《考试说明》要求学生:1理解不等式的性质及其证明;掌握简单不等式的解法;掌握分析法、综合法、比较法证明简单的不等式.2掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理及其应用.3理解不等式|a|-|b|≤|a+b|≤|a|+|b|.下面介绍高考不等式基础试题考点及解析.考点1 均值不等式定理简单应用例1 (1999年全国高考题)若正数a,b满足ab=a+b+3,则ab的取值范围是.解析:运用均值不等式求和的最小值或积的最大值时,必须具备三个条件:各数为正;和或积为定值;等号应能成立.解:由均值不等式定理得ab=a+b+3≥2ab+3.即(ab+1)(…  相似文献   

8.
纵观近几年的高考数学试题 ,一些比较困难的问题 ,常有一定的高等数学背景 .2 0 0 2年高考数学 (理 )压轴题正是如此 .这个题目是 :设数列 {an}满足 an+ 1=a2n - nan+1,n =1,2 ,3,…( )当 a1=2时 ,求 a2 ,a3,a4,并由此猜出 an的一个通项公式 ;( )当 a1≥ 3时 ,证明对所有的 n≥ 1,有( i) an ≥ n +2 ;( ii) 11+a1+11+a2+… +11+an≤ 12 .解析 :这是以数列和不等式的基础知识为载体 ,考查猜想、归纳、迭代、递推、放缩、推理以及分析问题和解决问题能力的一道好题 .这道题的入口较宽 ,( )及( ) ( i)不难解决 ,( ) ( ii)难倒了不少考生 ,…  相似文献   

9.
柯西不等式:(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)(当且仅当b1/a1=b2/a2=b3/a3=…=bn/an时,等号成立)是一个重要的不等式,其结构和谐、形式优美、应用广泛,是高考考查的热点.本文举例说明柯西不等式在求值、求最值、证明不等式及求参数的范围等方面的应用.  相似文献   

10.
著名的均值不等式“若a1,a2,…,an∈R+,则仅当a1=a2=…=an(n≥2,n∈N)时等号成立”是一个应用广泛的不等式,许多外形与它截然相异的函数式,常常也能利用它巧妙地求出最值,且运用均值定理求最值是历年来高考的热点内容,因此必须掌握利用重要不等式求函数的最值的方法和技巧.  相似文献   

11.
均值不等式:设a1,a2,…,an∈R+,则a1+a2+…+an/n≥√a1a2…an 当且仅当a1=a2=…=an时,不等式等号成立. 学生在应用时,最感困难的是怎样变形来沟通待解决的问题与均值不等式之间的联系,确实应用均值不等式解题是以适当的变形为基础,可以说恰到好处的变形是应用均值不等式解题的关键.为此,本文归纳运用均值不等式解题的变形技巧,供参考.  相似文献   

12.
在国内外数学竞赛以及一些数学杂志上出现了一类分式不等式 ,许多专家都曾对这类不等式作过研究 ,指出了较多好的证法 .本文旨在说明这类分式不等式有一种统一初等证法 ,就是都利用一个常见的简单不等式 (a1+a2 +… +an) (1a1+ 1a2 +… +1an)≥n2 (ai >0 ,i=1 ,2 ,3,… ,n)加以证明的 .问题 1  (英国竞赛题 )设正数a1,a2 ,… ,an 之和为S ,求证 :a1 S -a1+a2S -a2+… +anS -an≥ nn - 1 (n∈N ,n≥ 2 ) .解析 原不等式等价于(a1 S-a1 +1 ) +(a2S-a2 +1 ) +… +(anS-an +1 )≥ nn - 1 +n ,即 SS-a1+ SS-a2 +… + SS-an ≥ n2n- 1 ,即…  相似文献   

13.
均值不等式a2 b≥ab(a>0,b>0,当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题.对于有些题目,可以直接利用公式求解.但是,有些题目必须进行必要的变形才能利用均值不等式求解.下面是一些常用的变形技巧.一、配凑1、凑系数例1当00,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子的积的形式,但其和不是定值.注意到2x (8-2x)=8为定值,故只需将y=x(8-2x)凑上一个系数即可.解y=x(8-2x)=21[2x·(8-2x)]≤212x 82-2x2=8,当且仅当2x=8-2x即x=2时取等号.∴当x=2时…  相似文献   

14.
例.已知0相似文献   

15.
尸夕屯习‘Z雀沙门-z门声畏二. 已知正数a,b满足ab~a+b十3,求动的最小值. 一、配项法 解:已知条件可化为(a一1)(b一1)一4 又‘:a,b为正数,易知a>1,b>1,而 ab一a+b十3=(a一1)+(b一1)十5 )2了(a一1)(b一1)+5二9 当a一1一b一1时, 即a二b一3时,ab取得最小值9 二、直接运用均值不等式 解:‘:a,b都为正数, :.ab一a十b十3)2、/丽.十3 解得:斌丽)3或甲丽(一1(舍去) 当a一b二3时,ab取得最小值为9. 三、方程法 解:设ab二t,则a十b“‘一3 :.a,b是关于x方程尹一(t一3)x十t二O的两个实数根 .’.乙~(t一3)’一4t)o, 解之得t)9或t成一l(舍去) :.当a~b一3时…  相似文献   

16.
当 n 个正变数之和为定值时,求它们之积的最大值的问题,常用著名的均值不等式(I)解.(x_1 x_2 …… x_n)/n≥(其中x_i(i=1,2,…,n)是正数,当且仅当 x_1=x_2=…=x_n 时等号成立.)(Ⅰ)但应用不等式(Ⅰ)求最大值时,有时还需要一些技巧,利用巧妙变形才能找到和的定值,  相似文献   

17.
应用 a+b≥2(ab)~(1/2)和 a+b+c≥3(abc)~(1/3)求和的最小值,应用 ab≤(a+b/2)~2和 abc≤(a+b+c/3)~3求积的最大值,这是中学阶段高考中比较重要的知识点,也是解决函数值域最值问题的常用方法.利用基本不等式求最值要遵循“一正二定三相等”的原则,即:①a,b,c 均为正数,②运用不等式后积(或和)为定值,③等号成立的条件必须具备.学生虽然都能将以上原则及不等式的应用形式记住,但由于不能从实质上理解其内涵要求,应用起来往往随意乱用,出现错误.请看下面几例:例1  相似文献   

18.
一、利用均值不等式求最值仅当 如果a,b〉0,则√a^2+b^2/2≥a+b/≥√2/1/a+1/b,当且 a=b时等号成立. 这组关系集中反映了两个正数的平方和、和、积、倒数和,这四种形式的量的不等关系.当其中一个量为定值,其它量伴随着产生最值;要使其中一个量有最值,只要使它左邻右舍的其它三量中有一定值即可.  相似文献   

19.
构造平面向理 巧解最值问题   总被引:1,自引:0,他引:1  
最值问题是数学奥林匹克中的热门试题 .它技巧性强 ,难度大 ,解法活 .本文利用高中数学新教材中新增的重要内容———平面向量 ,巧解一类最值问题 .1 求不等式恒成立时的参数最值例 1  (1992年上海市高三数学竞赛试题 )若正数使不等式 :x +y≤ax +y对一切正数x、y成立 ,则a的最小可能值是_____ .解 构造向量 a =(x ,y) , b=(1,1) .由 | a· b|≤| a|| b| ,得  x+ y≤ 2 · x+y.当且仅当 a与 b同向 ,即x =y时 ,等号成立故a的最小可能值是 2 .例 2  (2 0 0 0年第 11届“希望杯”全国数学邀请赛高…  相似文献   

20.
如果a,bR,那么a2+b2≥2ab(当且仅当a=b时取“=”号).该结论利用作差法极易证明.下面给出其推论及应用.推论1如果a,b是正数,那么a+b2≥ab√(当且仅当a=b时取“=”号).这个定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.其应用极其广泛,常用于求最值、比较大小、求取值范围和证明不等式等.例1若实数a,b满足a+b=2,则3a+3b的最小值是A.18B.6C.23√D.234√解3a+3b≥23a·3b√=23a+b√=6(当且仅当a=b=1时取“=”号).即3a+3b的最小值为6.选B.推论2如果a,bR,那么a2+b2≥2|ab|(当且仅当|a|=|b|时取“=”号).证明∵a2+b2=…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号