首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 352 毫秒
1.
对简单图G(V,E)f,是从V(G)∪E(G)到{1,2,Λ,k}的映射,k是自然数,若f满足(1)u,v∈E(G),u≠,f(u)≠f(v);(2)uv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),\C(u)\C(v)\≥1并且|C(v)\C(u)|≥1;则称f是G的Smarandachely邻点全染色.本文给出了圈的平方图的的Smarandachely邻点全色数.  相似文献   

2.
对简单图G(V.E),f是从E(G)到{1,2,…,k}(k是自然数)的映射,若f满足:(1)()uv,uw∈E(G),v≠w,f(uv)≠f(uww);(2)()uv∈E(G).|C(u)\C(v)|≥1,并且|C(v)\C(u)|≥1;则称f是G的Smarandachely邻点边染色.文章给出了m(m=2,3,4)阶路与n阶路的联图的smarandachely邻点边色数.其中C(u)={f(uv)|uv∈E(G)且u≠v}.  相似文献   

3.
对简单图G(V,E),f是从V(G)u E(G)到{1,2,…, k}的映射,K是自然数,若,满足(1) uv∈E(G),u≠v,f(u)≠f(v);(2) uv,uw∈E(G),v≠w,f(uv)≠f(uw);则称/是G的第一类弱全染色.给出了若干联图的第一类弱全色数.  相似文献   

4.
设G是简单图,图G的一个k-点可区别IE-全染色(简记为k-VDIET染色),f是指一个从V(G)∪E(G)到{1,2,…,k}的映射,且满足:uv∈E(G),有f(u)≠f(v);u,v∈V(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.数min{k|G有一个k-VDIET染色}称为图G的点可区别IE-全色数,记为χviet(G).本文给出了完全二部图K6,n(7≤n≤243)的点可区别IE-全色数.  相似文献   

5.
对简单图G(V,E),f是从V(G)U E(G)到{1,2,…,k}的映射,k是自然数,如果对任意的uv∈E(G),有f(u)≠f(u),对任意的uv,uw ∈E (G),u≠w,有f(uv)≠,f(uw),则称f为图G的一个第一类弱全染色.最小的k称为G的第一类弱全色数.给出了路、圈、星、扇、轮、完全图的倍图的第一类弱全色数.  相似文献   

6.
对图G(V,E),μ(G)称为G的Mycielski图,V(μ(G))=y(C)U{v'|v∈V(G))U{w},且w∈V(G),而E(μ(G))=E(G)U{uv'|u∈V(G)v’∈V’,且uv∈E(G))U{wv'tv’∈V’)其中w∈V(G),V’={v'|v∈V(G)).  相似文献   

7.
对图G(V,E),定义图I(G)为如下图:V(I(G))={(ve)|v∈V(G),e∈E(G)且v与e关联},E(I(G))={(ue,vf)|u=v或e=f或uv=e或uv=f}称I(G)为G的关联图,其中(ue,vf)表示关联图I(G)的以ue和vf为端点的边、本文证明了Petersen图的关联图是Hamilton图  相似文献   

8.
设图G=G(V,E),令函数f:V→{-1,1},f的权w(f)=∑v∈Vf[v],对v∈V,定义f[v]=∑u∈N[v]f(u),这里N[v]表示V中顶点v及其邻点的集合。图G的符号控制函数为f:V→{-1,1}满足对所有的v∈V有f[v]≥1,图G的符号控制数γs(G)就是图G上符号控制数的最小权,称其f为图G的γs-函数。研究了C2n图,通过给出它的一个γs-函数得到了其符号控制数。  相似文献   

9.
1990年,Rosa给出了k公平图的概念。 定义:设简单连通图G=(A,E),有正整数k≥2,若存在映射f:A(G)→[0,k—1],导出映射f~*:E(G)→[0,k—1],使得f~*(uv)=│f(u)—f(v)│,Auv∈E(G),Ai≠j,i、j=0,1,…,k—1,满足 标号为i的点的个数与标号为j的点的个数之差≤1; 标号为i的边的个数与标号为j的边的个数之差≤1.则称f为G的k公平标号,G称为k公平图。其中  相似文献   

10.
若图G=(V,E),给定方向为D,A表示一个非平凡的阿贝尔群,F(G,A)表示映射f:E(G)→A的集合.若对任意f∈F(G,A)存在映射c:V(G)→A,使得G中的每一条有向边e=uv∈E(G)(方向是u→v)满足c(u)-c(v)≠f(e),这时说图G是A-可染的.使得图G在方向D下是A-可染的,A的最小阶数为图G的群色数,记为χg(G).主要是在分析了一些双图的特性的基础上讨论了它们的群色数.对于任意阶路的双图可得出其群色数都是3,还证明了圈的双图的群色数不超过5以及得到其它一些双图的群色数的上界.  相似文献   

11.
研究了k-方体图Qk(V,E)的Smarandachely邻点全染色,证明了关于图的Smarandachely邻点全染色猜想于k-方体图成立,r-正则图G(V,E)的Smarandachely邻点全色数sχat(G)=Δ(G)+2,其中sχat(G)表示G(V,E)的Smarandachely邻点全色数。  相似文献   

12.
设G是阶数不小于2的简单连通图,G的k-正常全染色,f称为是邻点可区别的,如果对G的任意相邻的两顶点其点的颜色及关联边的颜色构成的集合不同.这样的k中最小者称为是G的邻点可区别全色数.本文得到了△(G)=6的2-连通外平面图的邻点可区别全色数.  相似文献   

13.
设G=(V,E)是一个无孤立点的图,一个实值函数f:V→[0,1]满足∑v∈N(u)f(v)≥1对一切u∈V(G)都成立,则称f为图G的一个Fractional全控制函数。图的Fractional全控制数定义为γ0f()G=min{f(V)|f为图G的Fractional全控制函数},文章中研究了图的Fractional全控制问题,主要给出了关于联图的Fractional全控制数的一个上界,由此确定了几类特殊图的Fractional全控制数,并推广了部分已知结果。  相似文献   

14.
图G=(V,E)的一个(λ,β)-瑕k-边着色是一个从E到{1,2,…,k}的映射,且存在一个最小整数β≥1,对每一个色j∈{1,2,…,β},至少存在一个顶点uj∈V(G)使得顶点uj关联着有色的j条边;对每一个色l∈{β+1,…,k},没有两条相邻边着有色l.图G的(λ,β)-瑕色数被表示为χ(λ,β)(G),它是一个最小的整数,使对整数k≥χ(λ,(β)G),图G总有一个(λ,β)-瑕k-边着色.在这篇文章中,我们证得χ(λ,1)(G)+λ-1≤χ′(G)≤χ(λ,1)(G)+,其中χ′(G)是G的正常边色数,并确定了几个特殊图类的瑕色数.  相似文献   

15.
两个图G1和G2的笛卡尔积图G1×G2定义为如下的图:V(G1×G2)=V(G1)×V(G2),E(G1×G2)={(u1,u2)(v1,v2)|u1=v1且u2v2∈E(G2),或者u2=v2且u1v1∈E(G1)}.图的交叉数是图论中的一个重要拓扑参数,而确定图的交叉数是一个完全胛一问题.本文确定了若干树Tn(n≤4)与圈Cm的笛卡尔积图的交叉数.  相似文献   

16.
令图G是无孤立点的无向图。 V(G)是图G的顶点集,D是V(G)的真子集。如果图G的每一个顶点至少与集合D中一点相邻,则集合D是图G的全控制集。 G中最小全控制集的顶点数称为G的全控制数,记为γt(G)。参考已有全控制数的知识及笛卡尔乘积 Cm□Cn、Pm□Pn 的全控制数的相关结论,利用γt(Cm□Cn )≤γt(Pm□Cn )≤γt(Pm□Pn )这一不等式给出了Cm□Pn(m =3,4)、Pm□Cn(n =2,4)的全控制数。  相似文献   

17.
设G=(V,E)是一个图,一个函数f:E→[0,1]如果对所有的边e∈E(G),都有∑e∈N(e’)f(e)≥1成立,则称f为图G的一个Fractional边全控制函数,简记为F边全控制函数,此处N(e’)表示G中与边e’相关联的边集。图G的F边全控制数定义为γ’tf(G)=min{∑e∈E(G)f(e)f是G的一个F边全控制函数}.本文得到了一般图的F边全控制数的若干界限,还确定了一些特殊图的F边全控制数。  相似文献   

18.
设j,k和m是3个正整数.给定一个图G.设f:V(G)→{0,1,…,m-1}是一个映射.如果对图G的任意一对相邻顶点u和v都有f(u)-f(v)m≥j,对任意一对距离为二的顶点都有f(u)-f(v)m≥k,其中a-bm=min{a-b,m-a-b},则称f是图G的一个圆m-L(j,k)-标号.使得图G有圆m-L(j,k)-标号的最小的正整数m称为图G的圆L(j,k)-标号数,记为σj,k(G).对任意2个满足j≤k的正整数,确定了树以及2个完全图的笛卡尔乘积图和直积图的圆L(j,k)-标号数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号