首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

2.
题目 已知a,b,c∈R,a+2b+3c=6,则a2+ 4b2+ 9c2的最小值为____. 解法1 由柯西不等式得(a2 +4b2+ 9c2)(12+12+ 12)≥(a+2b+3c)2, 所以3(a2+ 4b2+ 9c2)≥36, 所以a2+ 4b2+ 9c2≥12,当a/1=2b/1=3c/1且a+2b+3c=6,即a=2,b=l,c=2/3时取得最小值.  相似文献   

3.
错在哪里     
王庆 《中学数学教学》2020,(1):F0003-F0003
题目已知实数a,b,c满足a+b+c=1,a 2+b 2+c 2=3,则c的取值范围是.解答∵a+b+c=1,∴a+b=1-c,又∵a 2+b 2+c 2=3,∴a 2+b 2=3-c 2.根据均值不等式a+b 2≤a 2+b 22得1-c 2≤3-c 22,且该均值不等式成立的条件:a、b∈R,等号成立条件:a=0,b≥0或a≥0,b=0或a=b>0.解不等式1-c 2≤3-c 22得:1-c≤0,3-c 2≥0,或1-c>0,3-c 2≥0,()2≤3-c 22,∴1≤c≤3或-1≤c<1,综上可得:-1≤c≤3.  相似文献   

4.
众所周知,若a,b∈R+,则a/b+b/a≥2,等号成立当且仅当a=b.此不等式可变形为如下的一个结论: 结论 若a,b∈R+,则a/b-1≥1-b/a,等号成立当且仅当a=b. 我们可以用上面的结论简证或简解一些对称式或轮换对称式问题,笔者通过举例来说明其运用. 例1 (《数学教学》问题384)设a,b,c是△ABC的三边,求证:a2/b+c-a+b2/c+a-b+c2/a+b-c≥a+b+c.  相似文献   

5.
定理二次函数y=ax2+bx+c的值域是[0,+∞)的充要条件是a>0且b2-4ac=0. 证明因为y=ax2+bx+c=a(x+b/2a)2+4ac-b2/4a,x∈R,所以二次函数y=ax2+bx+c的值域是[0,+∞)←→y的最小值是0,无最大值←→a>0且b2-4ac=0.  相似文献   

6.
本文先给出含双圆半径的几何性质: 定理1:设△ABC的外接圆半径为R,内切圆半径为r,顶点A、B、C到内心的距离分别为a0,b0,c0,则4Rr2=a0b0c0. 证明:因为r=(a0sin)A/2.=(b0sin)B/2=(c0sin)C/2. 所以r3=(a0b0c0sin)A/2(sin)B/2(sin)C/2因为△=1r/2(a+b+c)=Rr(sinA+sinB+sinC)=2R2sinAsinBsinC所以r/2R=sinA·sinB·sinC/sin+sinB+sinC又因为易证sinA+sinB+sinC=  相似文献   

7.
文[1]给出了数学奥林匹克司题高229题:"已知a,b,c∈R+,abc=1,求证:1/a+1/b+1/c+3/a+b+c≥4"的简证后,又将之推广为:"已知a,b,c∈R_+,abc=1,0<λ<9/2,则1/a+1/b+1/c+λ/a+b+c≥3+λ/3"·笔者探究发现,该推广对λ=9/2也成立,而且从λ=9/2入手证明之更加简便.现介绍于后,以供参考.  相似文献   

8.
不等式a~3+b~3+c~3≥3abc的证法及推广   总被引:1,自引:0,他引:1  
现行教材中三元基本不等式 :“若 a,b,c∈R+ ,则 a3+ b3+ c3≥ 3 abc,当且仅当 a =b =c时 ,等式成立 .”是用因式分解方法证明 ,但分解需要一定技巧 .笔者在教学中了解 ,学生除了欣赏很难掌握 .笔者从学生已有的知识出发 ,通过证明一般的情况 ,导出三元基本不等式的证明 .要证上述“若 a,b,c∈ R+ ,则 a3+ b3+ c3≥ 3 abc,不等式成立 .”学生已有的知识是 :若 a∈ R+ ,a≥ a成立 ,(a∈ R也成立 )若 a,b∈ R+ ,a2 + b2 =2 ab成立 ,当且仅当 a =b时 ,等式成立 .(a,b∈ R也成立 ) ,自然联想 :a,b,c,d∈ R+ ,a4 + b4 + c4 +d4≥ 4abcd是否成…  相似文献   

9.
一个不等式的再推广   总被引:1,自引:0,他引:1  
问题 :已知 a,b,c∈ R~+,则 a/(b + c)+ b/(a + c)+ c/(a + b)≥ 3/2文 [1 ]将其推广为 :设△ ABC的三边为 a,b,c,若 -1 <λ<1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥3λ + 2 ( 1 )本文将 ( 1 )式推广为 :命题 1 已知 a,b,c∈ R+,若 -2 <λ≤1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥ 3λ + 2 ( 2 )若λ=1时 ,( 2 )式显然成立 ,若λ∈ ( -2 ,1 )时 ,令x =λa + b + cy =λb + a + cz =λc+ a + b a =( y + z) - (λ+ 1 ) x( 1 -λ) (λ + 2 )b =( x + z) - (λ + 1 ) y( 1 -λ) (λ + 2 )c=( x + y) - (λ+ 1 ) z( 1 -λ)…  相似文献   

10.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

11.
性质1 若a+b+c=0,则方程ax2+bx+c=0有一个根是1. 证明:∵a+b+c=0,∴c=-(a+b).∴ax2+bx-(a+b)=0.∴(x-1)(ax+a+b)=0.∴x=1或x=-1-b/a.  相似文献   

12.
题目已知实数a>1,b>1, c>1.求证: a3/b2-1+b3/c2-1+c3/a2-1≥j9√3/2. (1)当且仅当a=b=c=√3时,(1)式等号成立.  相似文献   

13.
文 [1 ]给出∑ 1a2 的上界估计 ,即设a、b、c为△ABC的三边长 ,R、r分别表示△ABC的外接圆、内切圆半径 ,则有∑ 1a2 ≤(R2 +r2 ) 2 +Rr(2R - 3r) 2R2 r3 (1 6R - 5r) .①文 [2 ]将①式加强为∑ 1a2 ≤ 14r2 .②本文给出∑ 1a2 的下界估计∑ 1a2 ≥ 12Rr.③证明 :∑ 1a2 =b2 c2 +a2 c2 +a2 b2a2 b2 c2≥(bc) (ac) +(ac) (ab) +(bc) (ab)a2 b2 c2=c+a +babc .由三角形中的恒等式a +b +c =2p(其中p为半周长 ) ,abc =4Rrp代入上式即得③ .有趣的是由②和③可得2r≤ 12r∑ 1a2≤R .这里又出现了欧拉不等式的一个隔离 .sum((1/(a~2))的下界…  相似文献   

14.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

15.
在文[1]中,陆爱梅老师提出一组四个猜想不等式: 猜想1 已知a,b,c是满足abc=1的正数,证明:a2/a3+2+b2/b3+2+c2/c3+2≤1/3(a+b+c); 猜想2 已知a,b,c是满足a+b+c=1的正数,证明:a2/b+c2+b2/c+a2+c2/a+b2>3/4; 猜想3 已知a,b,c是满足a+b+c=3的非负实数,证明:a+b/a+1+b+c/b+1+c+a/c+1≥3; 猜想4 已知a,b,c是两两不同的实数,证明:(a-b/a-c)2+(b-c/b-a)2+(c-a/c-b)2≥a2+c2/a2+b2+b2+a2/b2+c2+c2+b2/c2+a2.  相似文献   

16.
不等式的证明是中学数学的一个难点,分式不等式的证明更为困难.本文提供了利用均值不等式配对证明一类分式不等式的思路. 一、如果不等式是形如sum form n to i=1 Ai2/Bi≥M的形式,且Ai,Bi(i=1,2,…,n),M均为正数,则可对Ai2/Bi配上Bi·P,成对利用均值不等式和不等式的基本性质证明. 例1 设a,b,c∈R+,求证:a2/(b+c)+b2/(c+a)+c2/(a+b)≥(a+b+c)/2. 证明:由a2/(b+c)+(b+c)/4≥a,b2/(c+a)+(c+a)/4≥b,c2/(a+b)+(a+b)/4≥c.上面三式相加得求证不等式.  相似文献   

17.
<数学通报>2001年2月号问题1300:设a,b,c,d∈R,且a+b+c+d=2,ab+ac+ad+bc+bd+cd=-(8)/(3),求b+c+d的最大值和最小值.  相似文献   

18.
<数学通报>2001年2月号数学问题1 300: 设a,b,c,d∈R,且a+b+c+d=2,ab+ac+ad+bc+bd+cd=-(83),求b+c+d的最大值和最小值.  相似文献   

19.
在证明等比性质时 ,巧妙地运用了设 k方法 ,收到了出奇制胜的效果 .设 k法的实质是借用 k为参数 ,建立已知与未知之间的联系 ,达到解题目的 .现列举实例 ,介绍 .一、用设 k法求值例 1  ( 1999年天津市初二数学竞赛试题 )已知a + b - cc =a - b + cb =- a + b + ca ,求( a + b) ( b + c) ( c + a)abc 的值 .解 :设 a + b - cc =a - b + cb =- a + b + ca =k,则 a + b =( k + 1) c, 1a + c=( k + 1) b, 2b + c =( k + 1) a, 3由 1+ 2 + 3,得 ( k - 1) ( a + b + c) =1,∴ k =1或 a + b + c =0 .当 k =1时 ,a + b =2 c,b + c =2 a,c+ a =2 b,…  相似文献   

20.
文 [1 ]给出了如下平面几何公式 :r =r1+r2 -2r1r2h .其中 ,P为△ABC的BC边上一点 ,h为BC边上的高 ,r ,r1,r2 分别为△ABC、△ABP和△ACP内切圆半径 .我们得到定理 设P为△ABC的边BC上一点 ,h为BC上的高 ,R ,R1,R2 分别为△ABC、△ABP、△ACP的外接圆半径 ,CA =b ,AB =c ,则R =(b +c) (bR1+cR2 )4h(R1+R2 ) . ( )证明 :由正弦定理 ,AP =2R1sinB =2R2 sinC ,设BC =a而sinB =b2R,sinC =c2R,因此R1+R2 =AP2 ( 1sinB+1sinC) =R(b +c)bc ·AP=R(b+c) sinAah ·AP=R(b+c)· AP2Rh=b +c2h (R1sinB +R2 sinC)=b +…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号