首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对简单图G(V,E)f,是从V(G)∪E(G)到{1,2,A,k}的映射,k是自然数,若,满足(1)u,v∈E(G),u≠,f(u)≠f(v);(2)Vuv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),\G(u)\C(v)\≥1并且IG(v)\C(u)1≥1;则称f是G的Smarandachely邻点全染色.本文给出了圈的平方图的的Smarandachely邻点全色数.  相似文献   

2.
对图G(V,E),μ(G)称为G的Mycielski图,V(μ(G))=y(C)U{v'|v∈V(G))U{w},且w∈V(G),而E(μ(G))=E(G)U{uv'|u∈V(G)v’∈V’,且uv∈E(G))U{wv'tv’∈V’)其中w∈V(G),V’={v'|v∈V(G)).  相似文献   

3.
对简单图G(V.E),f是从E(G)到{1,2,…,k}(k是自然数)的映射,若f满足:(1)()uv,uw∈E(G),v≠w,f(uv)≠f(uww);(2)()uv∈E(G).|C(u)\C(v)|≥1,并且|C(v)\C(u)|≥1;则称f是G的Smarandachely邻点边染色.文章给出了m(m=2,3,4)阶路与n阶路的联图的smarandachely邻点边色数.其中C(u)={f(uv)|uv∈E(G)且u≠v}.  相似文献   

4.
一个简单较G=(V,E)被称为是巧妙的(felicitous),若存在单射f:V(G)→{0,1,2,…,|E|}使得对所有的边e=uv∈E(G),由f^*()e)=f(x) f(y)(mod|E|)导出的映射f^*:E(G)→{0,1,2…,|E|-1}是双射。设G是简单图,在G的每相邻两顶点之间都加入一个顶点后所得到的图称为G的细分图,章证明了Moebius梯的细分图是巧妙图。  相似文献   

5.
对简单图G(V,E)f,是从V(G)∪E(G)到{1,2,Λ,k}的映射,k是自然数,若f满足(1)u,v∈E(G),u≠,f(u)≠f(v);(2)uv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),\C(u)\C(v)\≥1并且|C(v)\C(u)|≥1;则称f是G的Smarandachely邻点全染色.本文给出了圈的平方图的的Smarandachely邻点全色数.  相似文献   

6.
对简单图G(V,E),f是从V(G)u E(G)到{1,2,…, k}的映射,K是自然数,若,满足(1) uv∈E(G),u≠v,f(u)≠f(v);(2) uv,uw∈E(G),v≠w,f(uv)≠f(uw);则称/是G的第一类弱全染色.给出了若干联图的第一类弱全色数.  相似文献   

7.
对图G(V,E),μ(G)称为G的Mycielski图,V(μ(G))=V(G)∪{v′|v∈V(G)}∪{w},且w■V(G),而E(μ(G))=E(G)∪{uv′|u∈V(G)v′∈V′,且uv∈E(G)}∪{wv′|v′∈V′}其中w■V(G),V′={v′|v∈V(G)}.  相似文献   

8.
设G是简单图,图G的一个k-点可区别IE-全染色(简记为k-VDIET染色),f是指一个从V(G)∪E(G)到{1,2,…,k}的映射,且满足:uv∈E(G),有f(u)≠f(v);u,v∈V(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.数min{k|G有一个k-VDIET染色}称为图G的点可区别IE-全色数,记为χviet(G).本文给出了完全二部图K6,n(7≤n≤243)的点可区别IE-全色数.  相似文献   

9.
一个简单图G=(V,E)是κ-优美的(κ≥1为整数),如果存在单射f:V(G)→{0,1,2,…,|E| κ-1}使得对所有的边uv∈E(G),由f^*(uv)=|f(u)-f(υ)|导出的映射f^*:E(G)→{κ,κ 1,…,|E| κ-1}是双射,设G是简单图,在G的每相邻两顶之间都加入一个顶点后所得到的图称为G的细分图。文章证明了Moebius梯的细分图是κ-优美图。  相似文献   

10.
设G=(V,E)为简单连通图,称PIv(G)=∑e=uv∈E(nu(e|G)+nv(e|G))为G的顶点PI指数,其中nu(e|G)表示图G中到边e=uv的端点u的距离小于到端点v的距离的顶点数,nv(e|G)表示图G中到边e=uv的端点v的距离小于到端点u的距离的顶点数.用分类讨论法得到了圈和路的平方图的顶点PI指数.  相似文献   

11.
设G=(V,E)是一个无孤立点的图,一个实值函数f:V→[0,1]满足∑v∈N(u)f(v)≥1对一切u∈V(G)都成立,则称f为图G的一个Fractional全控制函数。图的Fractional全控制数定义为γ0f()G=min{f(V)|f为图G的Fractional全控制函数},文章中研究了图的Fractional全控制问题,主要给出了关于联图的Fractional全控制数的一个上界,由此确定了几类特殊图的Fractional全控制数,并推广了部分已知结果。  相似文献   

12.
一个简单图G =(V ,E)被称为是巧妙的 (felicitous) ,若存在单射f: V(G)→ { 0 ,1,2 ,… ,|E| }使得对所有的边e=uv∈E(G) ,由f (e) =f(x) +f(y) (mod|E| )导出的映射f : E(G)→ { 0 ,1,2 ,… ,|E| - 1}是双射。设G是简单图 ,在G的每相邻两顶点之间都加入一个顶点后所得到的图称为G的细分图 ,文章证明了M bius梯的细分图是巧妙图  相似文献   

13.
设图G=G(V,E),令函数f:V→{-1,1},f的权w(f)=∑v∈Vf[v],对v∈V,定义f[v]=∑u∈N[v]f(u),这里N[v]表示V中顶点v及其邻点的集合。图G的符号控制函数为f:V→{-1,1}满足对所有的v∈V有f[v]≥1,图G的符号控制数γs(G)就是图G上符号控制数的最小权,称其f为图G的γs-函数。研究了C2n图,通过给出它的一个γs-函数得到了其符号控制数。  相似文献   

14.
设G=(V,E)是一个图,一个实值函数f:V→[0,1]满足∑v∈N[u]f(v)≥1对一切u∈V(G)都成立,则称f为图G的一个Fractional控制函数。图G的Fractional控制数定义为γf(G)=min∑v∈V(G)f(v)f为图G的Fractional{}控制函数。本文主要解决了一类特殊图,即广义轮图的Fractional控制数。  相似文献   

15.
对简单图G(V,E),f是从V(G)U E(G)到{1,2,…,k}的映射,k是自然数,如果对任意的uv∈E(G),有f(u)≠f(u),对任意的uv,uw ∈E (G),u≠w,有f(uv)≠,f(uw),则称f为图G的一个第一类弱全染色.最小的k称为G的第一类弱全色数.给出了路、圈、星、扇、轮、完全图的倍图的第一类弱全色数.  相似文献   

16.
n阶简单图G,满足e∈E(G),e=uv,使得d(u)+d(v)≥n,在这篇文章里我们证明了图G的周长可以用图G的某些参数表示出来;并且当图G不是完全二部图时,证明了图G包含了长度为3到周长的所有圈.  相似文献   

17.
设G=(V,E)是一个非空图,一个函数f:E→{-1,1},如果满足∑e’∈N[e]f(e’)≥1对于每一条边e∈E(G)均成立,则称f为图G的一个符号边控制函数。图G的符号边控制数记为r’s(G),定义为r’s(G)=min{∑e∈E(G)f(e)︱f}为G的一个符号边控制函数。全文对图的符号边控制函数进行了研究,得到了图的符号边控制数的若干新的下界。  相似文献   

18.
若图G=(V,E),给定方向为D,A表示一个非平凡的阿贝尔群,F(G,A)表示映射f:E(G)→A的集合.若对任意f∈F(G,A)存在映射c:V(G)→A,使得G中的每一条有向边e=uv∈E(G)(方向是u→v)满足c(u)-c(v)≠f(e),这时说图G是A-可染的.使得图G在方向D下是A-可染的,A的最小阶数为图G的群色数,记为χg(G).主要是在分析了一些双图的特性的基础上讨论了它们的群色数.对于任意阶路的双图可得出其群色数都是3,还证明了圈的双图的群色数不超过5以及得到其它一些双图的群色数的上界.  相似文献   

19.
图G=(V,E)的k-赋权w是对图的每条边e∈E安排一个权值w(e)∈{1,2,…,k}.由边权导出图G的一个乘积顶点染色c,使得对图的每一个顶点v,c(v)=∏v∈e w(e)且对任意的边e=uv∈E,都有c(u)≠c(v).本文研究了Kn-e,Pm×Pn(m,n≥2)和Pm×Cn(m≥2)2-赋权乘积顶点染色的存在性.  相似文献   

20.
两个图G1和G2的笛卡尔积图G1×G2定义为如下的图:V(G1×G2)=V(G1)×V(G2),E(G1×G2)={(u1,u2)(v1,v2)|u1=v1且u2v2∈E(G2),或者u2=v2且u1v1∈E(G1)}.图的交叉数是图论中的一个重要拓扑参数,而确定图的交叉数是一个完全胛一问题.本文确定了若干树Tn(n≤4)与圈Cm的笛卡尔积图的交叉数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号