首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
2.
The literature related to Borg's ratings of perceived exertion (RPE) scale has revealed inconsistencies about the strength of the relationship between ratings of perceived exertion and various physiological criterion measures, such as heart rate, blood lactate concentration, percent maximal oxygen uptake (%VO2max), oxygen uptake (VO2), ventilation and respiration rate. Using sex of participants, fitness, type of RPE scale used, type of exercise, exercise protocol, RPE mode and study quality, we undertook a meta-analysis to determine the strength of the relationship between RPE scores and the six aforementioned physiological measures. The weighted mean validity coefficients were 0.62 for heart rate, 0.57 for blood lactate, 0.64 for %VO2max 0.63 for VO2, 0.61 for ventilation and 0.72 for respiration rate. Analysis of moderator variables revealed that the following study features could account for the variation of results across studies: heart rate--fitness, type of exercise, protocol and RPE mode; blood lactate concentration--sex, RPE scale; VO2--sex, exercise type, RPE mode; ventilation--sex, RPE mode; respiration rate--exercise protocol, RPE mode. The highest correlations between ratings of perceived exertion and the various physiological criterion measures were found in the following conditions: when male participants (whose VO2 or ventilation was measured) were required to maximally exert themselves (measuring %VO2max or ventilation); when the exercise task was unusual [e.g. when participants were swimming, which is less common than walking or running (when heart rate, %VO2max and VO2 are measured)]; or when the 15-point RPE scale (measuring blood lactate concentration) was used. These findings suggest that although Borg's RPE scale has been shown to be a valid measure of exercise intensity, its validity may not be as high as previously thought (r = 0.80-0.90), except under certain conditions.  相似文献   

3.
The physiological responses of high (HF) and low fit (LF) individuals at given perceived exercise intensities were compared to ranges provided by the American College of Sports Medicine (ACSM). Participants were 7 LFand 8 HF men between the ages of 22 and 26 years. All participants performed a maximum oxygen uptake and lactate threshold test and two 15-min experimental runs in which they exercised at a constant perceived exercise intensity (RPE 13 and 17). The LF group exhibited significantly greater maximum oxygen uptake reserve ( % VO2R, p < .05) and velocity of lactate threshold (p < .01) values than HF at RPE 13 and 17. Both groups had significantly greater % VO2R and maximum heart rate values at RPE 13 in comparison with the ACSM ranges, using the highest value for the given range (p < or = .001).  相似文献   

4.
田中  崔书强 《体育科研》2013,(5):64-66,71
目的:探讨我国优秀皮划艇运动员有氧能力的评价方法,为制定针对性的训练计划提供参考。方法:以备战伦敦奥运会国家皮划艇队运动员为研究对象,包括8名男子皮艇、7名女子皮艇和6名划艇运动员。利用皮划艇测功仪采用逐级递增负荷至力竭测最大摄氧量、利用4级1 000 m递增强度划船测试乳酸阈(4 mmol/l对应的船速)。结果:伦敦奥运周期我国优秀男子皮艇、女子皮艇和划艇运动员的绝对最大摄氧量分别为(5.25±0.22)l/min、(3.58±0.22)l/min、(4.85±0.13)l/min;相对最大摄氧量分别为(57.28±3.8 1)ml/(kg·min-1)、(50.92±3.78)ml/(kg·min-1)、(54.72±5.3)1ml/(kg·min-1),,经过3个月训练后男子皮艇和划艇运动员最大摄氧量无明显变化,女子皮艇运动员明显提高;男子皮艇、女子皮艇和划艇运动员乳酸阈船速经过3个月的训练后都明显提高,提高幅度分别为11.92%、3.77%和14.37%。结论:我国伦敦周期优秀皮划艇运动员的最大摄氧量高于国际优秀皮划艇运动员的平均水平,和最大摄氧量比较,乳酸阈表现出更好的训练可塑性,能够更为准确的反映皮划艇运动员有氧能力的动态变化。  相似文献   

5.
We tested the hypothesis that exercise-induced muscle damage would increase the ventilatory (V(E)) response to incremental/ramp cycle exercise (lower the gas exchange threshold) without altering the blood lactate profile, thereby dissociating the gas exchange and lactate thresholds. Ten physically active men completed maximal incremental cycle tests before (pre) and 48 h after (post) performing eccentric exercise comprising 100 squats. Pulmonary gas exchange was measured breath-by-breath and fingertip blood sampled at 1-min intervals for determination of blood lactate concentration. The gas exchange threshold occurred at a lower work rate (pre: 136 ± 27 W; post: 105 ± 19 W; P < 0.05) and oxygen uptake (VO(2)) (pre: 1.58 ± 0.26 litres · min(-1); post: 1.41 ± 0.14 litres · min(-1); P < 0.05) after eccentric exercise. However, the lactate threshold occurred at a similar work rate (pre: 161 ± 19 W; post: 158 ± 22 W; P > 0.05) and VO(2) (pre: 1.90 ± 0.20 litres · min(-1); post: 1.88 ± 0.15 litres · min(-1); P > 0.05) after eccentric exercise. These findings demonstrate that exercise-induced muscle damage dissociates the V(E) response to incremental/ramp exercise from the blood lactate response, indicating that V(E) may be controlled by additional or altered neurogenic stimuli following eccentric exercise. Thus, due consideration of prior eccentric exercise should be made when using the gas exchange threshold to provide a non-invasive estimation of the lactate threshold.  相似文献   

6.
The purpose of this study was to assess the validity of predicting the maximal oxygen uptake (VO2(max)) of sedentary men from sub-maximal VO2 values obtained during a perceptually regulated exercise test. Thirteen healthy, sedentary males aged 29-52 years completed five graded exercise tests on a cycle ergometer. The first and fifth test involved a graded exercise test to determine VO2(max). The two maximal graded exercise tests were separated by three sub-maximal graded exercise tests, perceptually regulated at 3-min RPE intensities of 9, 11, 13, 15, and 17 on the Borg ratings of perceived exertion (RPE) scale, in that order. After confirmation that individual linear regression models provided the most appropriate fit to the data, the regression lines for the perceptual ranges 9-17, 9-15, and 11-17 were extrapolated to RPE 20 to predict VO2(max). There were no significant differences between VO2(max) values from the graded exercise tests (mean 43.9 ml x kg(-1) x min(-1), s = 6.3) and predicted VO2(max) values for the perceptual ranges 9-17 (40.7 ml x kg(-1) x min(-1), s = 2.2) and RPE 11-17 (42.5 ml x kg(-1) x min(-1), s = 2.3) across the three trials. The predicted VO2(max) from the perceptual range 9-15 was significantly lower (P < 0.05) (37.7 ml x kg(-1) x min(-1), s = 2.3). The intra-class correlation coefficients between actual and predicted VO2(max) for RPE 9-17 and RPE 11-17 across trials ranged from 0.80 to 0.87. Limits of agreement analysis on actual and predicted VO2 values (bias +/- 1.96 x S(diff)) were 3.4 ml x kg(-1) x min(-1) (+/- 10.7), 2.4 ml x kg(-1) x min(-1) (+/- 9.9), and 3.7 ml x kg(-1) x min(-1) (+/- 12.8) (trials 1, 2, and 3, respectively) of RPE range 9-17. Results suggest that a sub-maximal, perceptually guided graded exercise test provides acceptable estimates of VO2(max) in young to middle-aged sedentary males.  相似文献   

7.
8.
自行车运动员高原训练前后有氧能力的变化   总被引:4,自引:2,他引:2  
本文观察了高原训练对自行车运动员最大吸氧量(VO_2max)和通气无氧阀(VT)的影响。3个月高原(1895m)训练后,男、女运动员VO_2max有不同程度提高,但无显著意义。VT-VO_2分别提高10.8%和12.4%,最大乳酸浓度(BLamax)下降17.9%和18.7%,较高原前有显著性差异。提示,经高原训练,运动员在相同功率负荷时,无氧供能比例下降,从而提高了机体在乳酸堆积前的工作能力和氧利用率。  相似文献   

9.
Factors influencing physiological responses to small-sided soccer games   总被引:3,自引:2,他引:1  
The aim of this study was to examine the effects of exercise type, field dimensions, and coach encouragement on the intensity and reproducibility of small-sided games. Data were collected on 20 amateur soccer players (body mass 73.1 +/- 8.6 kg, stature 1.79 +/- 0.05 m, age 24.5 +/- 4.1 years, VO(2max) 56.3 +/- 4.8 ml x kg(-1) x min(-1)). Aerobic interval training was performed during three-, four-, five- and six-a-side games on three differently sized pitches, with and without coach encouragement. Heart rate, rating of perceived exertion (RPE) on the CR10-scale, and blood lactate concentration were measured. Main effects were found for exercise type, field dimensions, and coach encouragement (P < 0.05), but there were no interactions between any of the variables (P > 0.15). During a six-a-side game on a small pitch without coach encouragement, exercise intensity was 84 +/- 5% of maximal heart rate, blood lactate concentration was 3.4 +/- 1.0 mmol x l(-1), and the RPE was 4.8. During a three-a-side game on a larger pitch with coach encouragement, exercise intensity was 91 +/- 2% of maximal heart rate, blood lactate concentration was 6.5 +/- 1.5 mmol x l(-1), and the RPE was 7.2. Typical error expressed as a coefficient of variation ranged from 2.0 to 5.4% for percent maximal heart rate, from 10.4 to 43.7% for blood lactate concentration, and from 5.5 to 31.9% for RPE. The results demonstrate that exercise intensity during small-sided soccer games can be manipulated by varying the exercise type, the field dimensions, and whether there is any coach encouragement. By using different combinations of these factors, coaches can modulate exercise intensity within the high-intensity zone and control the aerobic training stimulus.  相似文献   

10.
The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6 × 3 min at 90% VO(2max) interspersed with 6 × 3 min active recovery at 50% VO(2max) with a 7-min warm-up and cool down at 70% VO(2max)) or 50 min moderate-intensity continuous running at 70% VO(2max). Ratings of perceived enjoyment after exercise were higher (P < 0.05) following interval running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P < 0.05) ratings of perceived exertion (14 ± 1 vs. 13 ± 1). There was no difference (P < 0.05) in average heart rate (88 ± 3 vs. 87 ± 3% maximum heart rate), average VO(2) (71 ± 6 vs. 73 ± 4%VO(2max)), total VO(2) (162 ± 16 vs. 166 ± 27 L) or energy expenditure (811 ± 83 vs. 832 ± 136 kcal) between protocols. The greater enjoyment associated with high-intensity interval running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.  相似文献   

11.
The aim of this study was to determine the effects of frequency of verbal encouragement during maximal exercise testing. Twenty-eight participants (12 males, 16 females) aged 20.9 +/- 1.5 years (mean +/- s) performed a maximal exercise test (VO2max) on a treadmill without any verbal encouragement. The participants were matched according to their pre-test VO2max and placed into either a control group or one of three experimental groups. They performed a second exercise test (post-test) 1 week later. During the second test, the control group received no verbal encouragement; the 20 s (20E), 60 s (60E) and 180 s (180E) encouragement groups received verbal encouragement every 20, 60 and 180 s, respectively, beginning with stage 3 of the exercise test. Relative VO2max, exercise time, blood lactate concentration, respiratory exchange ratio (RER) and ratings of perceived exertion (RPE) were not significantly different from the first test to the second test for the control group without verbal encouragement and the 180E group that received infrequent encouragement. Post-test values were significantly higher than pre-test values for the 20E and 60E groups. The post-test values of the 20E group were significantly higher than their pre-test values for relative VO2max (P < 0.001), exercise time (P < 0.0001), blood lactate concentration (P < 0.05), RER (P < 0.01) and RPE (P < 0.0001); this was also the case for the 60E group for relative VO2max (P < 0.01), blood lactate concentration (P < 0.05), RER (P < 0.05) and RPE (P < 0.05). The results suggest that frequent verbal encouragement (every 20 s and 60 s in the present study) leads to significantly greater maximum effort in a treadmill test than when no encouragement is given or when the encouragement is infrequent (i.e. every 180 s).  相似文献   

12.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 +/- 3.6 years, height 1.68 +/- 0.54 m, body mass 67.1 +/- 11.7 kg; mean +/- s) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake (VO2) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest VO2 measured during the test was recorded as VO2max (mean = 3.18 +/- 0.35 l.min-1). Peak power (380 +/- 63.2 W) and mean power (368 +/- 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 +/- 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), VO2max (l.min-1), VO2max (ml.kg-1.min-1), VO2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent VO2max) and VEmax (l.min-1) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time2000 = -0.163 (Power) -14.213.(VO2max l.min-1) +0.738.(Fatigue) 7.259 (R2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while VO2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

13.
14.
Effect of a carbohydrate mouthwash on running time-trial performance   总被引:1,自引:0,他引:1  
The aim of the present study was to determine the effect of a carbohydrate mouthwash on running time-trial performance. On two separate occasions, seven recreationally active males (VO2max 57.8 ml x kg(-1) x min(-1), s = 3.7) completed a preloaded (15 min at 65%VO2max) time-trial of 45 min in duration on a motorized treadmill. At 6-min intervals during the preload and time-trial, participants were given either a 6% maltodextrin, 3% lemon juice solution (carbohydrate trial) or a 3% lemon juice placebo mouthwash (placebo trial) in a double-blind, randomized crossover design. Heart rate, oxygen consumption (VO2), respiratory exchange ratio (RER), and ratings of perceived exertion (RPE) were measured during the preload, and blood glucose and lactate were measured before and after the preload and time-trial. There were no significant differences in distance covered between trials (carbohydrate: 9333 m, s = 988; placebo: 9309 m, s = 993). Furthermore, there were no significant between-trial differences in heart rate and running speed during the time-trial, or VO2, RER or RPE during the preload. Blood lactate and glucose increased as a result of the exercise protocol, with no between-trial differences. In conclusion, there was no positive effect of a carbohydrate mouthwash on running performance of approximately 1 h duration.  相似文献   

15.
The purpose of the present study was to examine the relationship between oxygen uptake (VO2) and heart rate (HR) responses during rest and exercise in Chinese children and youth and to evaluate the relationships between maximal heart rate (%HRmax), heart rate reserve (%HRR), peak oxygen uptake (% VO2peak), and oxygen uptake reserve (% VO2R) in Chinese children and youth. Forty-nine Chinese children and youth were studied at rest and during a graded maximal exercise test on treadmill. Resting, submaximal and peak HR and VO2 were collected. Regression analyses were conducted to investigate the associations between the various forms of HR and VO2 measures. The equivalency between %HRR and % VO2R for adults was examined for children using data obtained in this study. Results indicated that all regression lines between HR measures and VO2 measures were significantly different from the line of identity (p < .05), except the regression line for %HRR versus %VO2 peak in boys. The equivalency between % VO2R and % HRR for adults was not demonstrated in children and adolescents in this study. In contrast, %HRR was more closely equivalent to % VO2 peak. Because a strong linear relationship was found between HR and VO2, HR measures, in terms of either %HRmax or %HRR, would still be a practical variable for prescribing appropriate exercise intensity for children and adolescents. Unlike results found for adults, a given % HRR in children and youth was not equivalent to its corresponding % VO2R.  相似文献   

16.
The physiological responses of high (HF) and low fit (LF) individuals at given perceived exercise intensities were compared to ranges provided by the American College of Sports Medicine (ACSM). Participants were 7 LF and 8 HF men between the ages of 22 and 26 years. All participants performed a maximum oxygen uptake and lactate threshold test and two 15-min experimental runs in which they exercised at a constant perceived exercise intensity (RPE 13 and 17). The LF group exhibited significantly greater maximum oxygen uptake reserve (%VO2R; p < .05) and velocity of lactate threshold (p < .01) values than HF at RPE 13 and 17. Both groups had significantly greater %VO2R and maximum heart rate values at RPE 13 in comparison with the ACSM ranges, using the highest value for the given range (p ≤ .001).  相似文献   

17.
The purpose of the study was to relate three determinants of distance running success, (a) maximal oxygen consumption (VO2max), (b) ventilatory threshold (VT), and (c) running economy (RE), to actual running time in a 5-km race (ART). Twenty-four female runners (M age = 15.9 years) from four high school teams that competed at the Massachusetts All-State 5-km Cross Country Championship Meet and placed 1st, 7th, 19th, and 20th were tested in the laboratory. The mean VO2max of these runners was 61.7 ml.kg-1.min-1, HRmax 201 b.min-1, VEmax 100 L.min-1, and RER 1.10. The VT occurred at 79% of the VO2max, and HR of 184 b.min-1 (92% of HRmax). The velocity at VT (vVT) and velocity at VO2max (vVO2max) was correlated with ART, r(22) = .78 and .77 (p less than .001), respectively. The VO2 at VT and at maximal exercise was correlated with ART by r(22) = -.66 and -.69 (p less than .001), respectively. The VO2 at 215 m.min-1 (8 mph) was poorly related to ART, r(22) = -.05, p greater than .05. It was concluded that either of the derived variables vVT and vVO2max appear to explain significant variation in distance running performance among adolescent female cross country runners.  相似文献   

18.
The aim of this study was to examine the variability of the oxygen uptake (VO2) kinetic response during moderate- and high-intensity treadmill exercise within the same day (at 06:00, 12:00 and 18:00 h) and across days (on five occasions). Nine participants (age 25 +/- 8 years, mass 70.2 +/- 4.7 kg, VO2max 4137 +/- 697 ml x min(-1); mean +/- s) took part in the study. Six of the participants performed replicate 'square-wave' rest-to-exercise transitions of 6 min duration at running speeds calculated to require 80% VO2 at the ventilatory threshold (moderate-intensity exercise) and 50% of the difference between VO2 at the ventilatory threshold and VO2max (50% delta; high-intensity exercise) on 5 different days. Although the amplitudes of the VO2 response were relatively constant (coefficient of variation approximately 6%) from day to day, the time-based parameters were more variable (coefficient of variation approximately 15 to 30%). All nine participants performed replicate square-waves for each time of day. There was no diurnal effect on the time-based parameters of VO2 kinetics during either moderate- or high-intensity exercise. However, for high-intensity exercise, the amplitude of the primary component was significantly lower during the 12:00 h trial (2859 +/- 142 ml x min(-1) vs 2955 +/- 135 ml x min(-1) at 06:00 h and 2937 +/- 137 ml x min(-1) at 18:00 h; P < 0.05), but this effect was eliminated when expressed relative to body mass. The results of this study indicate that the amplitudes of the VO2 kinetic responses to moderate- and high-intensity treadmill exercise are similar within and across test days. The time-based parameters, however, are more variable from day to day and multiple transitions are, therefore, recommended to increase confidence in the data.  相似文献   

19.
探讨HiHiLo训练法与LoHiLo训练法对提高女子跆拳道运动员有氧代谢能力的影响。结果表明:HiHiLo组无氧阈功率指标显著性上升,AT功率平均水平上升了8.24%,RPE指标在各时间点均显著性降低,心率指标无显著性影响,血乳酸指标从150~240W时段显著性降低,.VO2max指标显著性升高,升高幅度达5.37%;LoHiLo组无氧阈功率指标无显著变化,上升幅度为6.24%,RPE指标只有在150~240W两个时间点有显著性降低,其他时间点无显著性,心率指标无显著性,血乳酸指标无显著性,.VO2max指标无显著性,降低了1.08%。结果提示:在提高跆拳道女运动员有氧代谢能力上,HiHi-Lo训练法较LoHiLo训练法更加有效。  相似文献   

20.
The aims of this study were to quantify the effects of factors such as mode of exercise, body composition and training on the relationship between heart rate and physical activity energy expenditure (measured in kJ x min(-1)) and to develop prediction equations for energy expenditure from heart rate. Regularly exercising individuals (n = 115; age 18-45 years, body mass 47-120 kg) underwent a test for maximal oxygen uptake (VO2max test), using incremental protocols on either a cycle ergometer or treadmill; VO2max ranged from 27 to 81 ml x kg(-1) x min(-1). The participants then completed three steady-state exercise stages on either the treadmill (10 min) or the cycle ergometer (15 min) at 35%, 62% and 80% of VO2max, corresponding to 57%, 77% and 90% of maximal heart rate. Heart rate and respiratory exchange ratio data were collected during each stage. A mixed-model analysis identified gender, heart rate, weight, V2max and age as factors that best predicted the relationship between heart rate and energy expenditure. The model (with the highest likelihood ratio) was used to estimate energy expenditure. The correlation coefficient (r) between the measured and estimated energy expenditure was 0.913. The model therefore accounted for 83.3% (R2) of the variance in energy expenditure in this sample. Because a measure of fitness, such as VO2max, is not always available, a model without VO2max included was also fitted. The correlation coefficient between the measured energy expenditure and estimates from the mixed model without VO2max was 0.857. It follows that the model without a fitness measure accounted for 73.4% of the variance in energy expenditure in this sample. Based on these results, we conclude that it is possible to estimate physical activity energy expenditure from heart rate in a group of individuals with a great deal of accuracy, after adjusting for age, gender, body mass and fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号