首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
现行全日制普通中学数学教科书 (试验修订本·必修 )第二册 (上 )第七章“直线和圆的方程”中有这样一道习题 :求函数 f (θ) =sinθ- 1cosθ- 2 的最大值和最小值 .编者把此题放在这里 ,意图十分明显 ,就是可把 f (θ) =sinθ- 1cosθ- 2 看成是定点 ( 2 ,1 )与单位圆 x2 + y2= 1上的动点 ( cosθ,sinθ)连线的斜率 ,从而问题转化为求斜率的最大值和最小值 .笔者由此得到启发 ,对动点在常见曲线上的“分式三角函数”的最值问题作如下探讨 ,供教与学中参考 .1 构造直线例 1 求 y=3sin x- 1sin x+ 2 的最值 .分析 因为 y=3sin x- 1sin x- …  相似文献   

2.
在高中数学中,求函数的值域是一种较为复杂的问题,往往方法较为灵活.现举一例,给出多种解法,同学们可从中受到启发.例题求函数y=sinx2-cosx的值域.解法一:(利用三角函数的有界性)去分母化为sinx+ycosx=2y,即y2+1sin(x+φ)=2y.因为|sin(x+φ)|≤1,所以|2y|≤y2+1,即3y2≤1.解得值域是[-33,33].解法二:(利用解析几何方法)函数变形为:y=0-(-sinθ)2-cosθ.联想到斜率公式,(如图1)可知y是连结A(2,0)与圆x2+y2=1上的点(cosθ,-sinθ)的斜率.所求值域就是这斜率的取值范围.设AB,AC为两切线,它们的斜率分别是-33,33.所以值域是[-33,33].解法三:(…  相似文献   

3.
我们知道,asinx+bcosx=a2+b2sin(x+φ),其中ab≠0,tanφ=ab,这个公式叫做辅助角公式.该公式可将异名三角函数化为同名三角函数,在解题中具有广泛的应用.现举例说明,以引起同学们的重视.一、求最值例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx的()(A)最大值是1,最小值是-1(B)最大值是1,最小值是-21(C)最大值是2,最小值是-2(D)解最大值是2,最小值是-1f(x)=sinx+3cosx=2sinx+3π,因为-2π≤x≤2π,所以-6π≤x+π3≤65π,所以-21≤sinx+3π≤1,所以-1≤f(x)≤2·故选(D).例2求函数y=sin2+2sinx·cosx+3cos2x的最小值,并写出使函数y取最小值的解x…  相似文献   

4.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

5.
三角函数的最值问题,是一个比较复杂的问题,涉及范围广,方法典型独特,解法多种多样,又有很独特的技巧性,是三角函数的重点和难点内容之一.现把在教学中常见的几种类型及解法归纳如下,供参考.1.对于形如y=asinx+b或y=acosx+b(a≠0)的三角函数最值问题,可从中解出sinx或cosx,再利用正弦(或余弦)函数的有界性(|sinx|≤1或|cosx|≤1),便可求出原函数的最小值为b-|a|,最大值为b+|a|.【例1】求函数y=sin(x-π4)·cosx的最小值和最大值.解:∵y=12sin(2x-π4)+sin(-π4)=12sin(2x-π4)-24,∴ymin=-24-12=-2+24,ymax=-24+12=2-24.2.对于形如y=asinωx…  相似文献   

6.
【例1】 求函数 y=lg(8sinx+14x-1π-6cosx+14x-1π)的 值域. 错解:令x+14x-1π=θ,则 y=lg(8sinθ-6cosθ)=lg10sin(θ-φ) ≤lg10=1(其中φ=arctan34),于是函数值 域为(-∞,1]. 辨析:上述解答没有考虑函数 θ=x+14x-1π的反函数存在条件, 故上述解答有误. 正解:上述解法中,因为方程 …  相似文献   

7.
<正>问题(2018年高考理科数学全国(Ⅰ)卷第16题)已知函数f(x)=2sinx+sin2x,则f(x)的最小值是______.解法赏析思路1f(x)=2sinx+sin2x,由周期函数不妨设x∈[0,2π],f'(x)=2cosx+2cos2x=2(2cos2x=2(2cos2x+cosx-1)=2(2cosx-1)(cosx+1).  相似文献   

8.
问题若实数x,y,z满足x+y+z=12,x 2+y 2+z 2=54,试求xy的最大值和最小值.[JP3]解法1:由x 2+y 2=54-z 2,可设x=54-z 2 cosθ,y=54-z 2 sinθ.[JP]则x+y+z=12,即12-z=54-z 2(sinθ+cosθ)=108-2z 2 sin(θ+π4),从而|12-z|≤108-2z 2,解得z∈[2,6].所以xy=12[(x+y)2-(x 2+y 2)]=12[(12-z)2-(54-z 2)]=z 2-12z+45.由2≤z≤6,得9≤z 2-12z+45≤25,即xy的最大值为25,最小值为9.  相似文献   

9.
赵传义 《高中数理化》2008,(3):43-44,40,41
一、填空题(每题3分)1.已知cosθ>0,sinθ<0,则θ为第象限角.2.若点P(2,y)为角α终边上的一点,且tanα=2,则y=.3.已知α是第二象限角,且sinα=31,则cotα=.4.函数y=cos(2x 3π)的最小正周期是.5.已知sinx=54,cosx=53,则tan2x=.6.若y=sinx acosx为奇函数,则实数a=.7.已知函数f(x  相似文献   

10.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

11.
正一、展示不同解题方法,体现合作学习的魅力一次考试,同一道题目,可能出现多种不同解法,在试卷讲评中,让学生把各种不同解法充分展示出来,对开拓学生思维,有着很好的引导作用.考题:已知x2+y2=100,求x+y的最值.此题不难,但解决方法有多种,考试过后,同学们给出了多种不同解答.学生1:换元法,设x=10cosθ,y=10sinθ则x+y=10(cosθ+sinθ)=槡10 2 sin(θ+24),显然,最大值是槡10 2,最小值是-槡10 2.学生2:数形结合法,设t=x+y,则y=-x+t.转化为求直线y=-x+t截距的最大最小值,利用圆心到  相似文献   

12.
在很多实际问题中 ,我们要面对各式各样的最值问题 ,利用三角函数的最值 ,如正、余弦函数y=Asinx ,y =Acosx的有界性 ,数学中的均值不等式 ,函数的单调性等知识结合起来 ,常常能使问题化腐朽为神奇 ,在解题的思路、技巧上 ,有章可依、有规可寻 ,使问题得到快速、圆满的解决 现举数例加以说明 :例 1:设f (x) =2sinxcosx 52sinx cosx ,x∈ [0 ,π2 ],(1) ,求f (π12 ) ,(2 )求f (x)的最小值 例 2 :求f (θ) 4sinθcosθ - 1sinθ cosθ 1,θ∈ [0 ,π2 ]的最值 上两例是典型的三角函数最值应用题 ,其思路可能是利用正、余弦函数的有界性 |sinx|≤ 1,|cosx|≤ 1或利用均值不等式、或利用函数的单调性 ,经过适当三角变换 ,使问题得到解决 例 1求解如下 :f (x) =2sinxcosx 52sinx cosx =sin2x 522sin (x π4 ),当x =π12 时 ,f (π12 ) =sin π6 522sin π3=6 注意f (x) =1 2s...  相似文献   

13.
一、利用距离公式例1已知x+y+1=0,则u=(x-1)2+(y-12姨)的最小值为.解如图1所示,如果将u=(x-1)2+(y-1)2看姨成是P(x,y)与B(1,1)两点间的距离,由于点P(x,y)的坐标满足x+y+1=0,所以u的最小值也就是点B(1,1)到直线x+y+1=0的距离,所以um=1+1+13姨2in=.姨22二、利用直线斜率公式例2实数x,y满足(x-2)2+y2=3,求y的最大值.x解如图2所示,设点P(x,y)为圆(x-2)2+y2=3上任一点,则y为直线O P的x斜率k.易求得km=3,ax姨即y的最大值为姨3.x三、利用单位圆例3已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是A.tancosθθ2222C.…  相似文献   

14.
均值不等式是解决最值的重要工具,但由于其约束条件苛刻,不少同学在使用时常常顾此失彼,导致解题失误.下面以同学们易陷于的误区举例分析如下:一、忽视等号成立条件例1求y=sinxcosx+sinx1cosx(0相似文献   

15.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

16.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

17.
在求某些函数的最大值、最小值时,用三角函数代换可巧妙地求解.这里介绍几种求最值时常用的三角函数代换. 1.若|x|≤1,可令x=sinθ. 例1 求函数y=(1-x~2)~(1/x)的最大值和最小值. 解:函数定义域是-1≤x≤1令x=sinθ,θ∈[-π/2,π/2],则(1-x~2)~(1/2)=cosθ,∴ y=sinθcosθ=1/2 sin2θ∴当θ=π/4即x=2~(1/2)/2时,y_(max)=1/2,当θ=-π/4即 x=-2~(1/2)/2时,y_(max)=-1/2.  相似文献   

18.
本文以 2 0 0 4年各地高考三角题为例 ,就题型与策略谈几点拙见 ,以供参考 .1.用公式asinα+bcosα =a2 +b2 sin(α+φ)化为一个角的某个三角函数 .【例 1】 求函数y=sin4 x+2 3sinxcosx-cos4 x的最小正周期和最小值 ,并写出该函数在 [0 ,π]上的递增区间 .解 :y =sin4 x+2 3sinxcosx-cos4 x=3sin2x-cos2x =2sin( 2x-π6)故此函数的周期为π ,最小值为 -2 ,[0 ,π3 ]为递增区间 ,[23 π ,π]为递增区间 .练习 1:求函数y=sinx -12 cosx(x∈R)的最大值 .2 .通过化简转化为以tanα为主元的代数式 .【例 2】 已知tan(α+π4) =2 ,求 12sinαc…  相似文献   

19.
利用直线与圆有公共点,能够解决许多比较复杂的数学问题.常常用到的结论有两条:其一,直线与圆有公共点的充要条件是圆心到直线的距离不大于半径;其二,直线与圆相切时只有一个公共点.1一、解决有关函数最值问题例1:求函数y=54csoinsxx+-110的最值【解】函数表达式可化为:4sinx-5ycosx-10y-1=0而sin2x+cos2x=1,所以点(cosx,sinx)是直线4μ-5yυ-10y-1=0与圆μ2+υ2=1的公共点,即圆心(0,)到直线的距离不大于圆的半径,即d=|-10y-1|√16+25y21亦即(10y+1)216+25y2,、解之得:-35y31故ymax=31;ymin=-53例2:已知x29+y42=1,求z=x-3y的最大值与最小…  相似文献   

20.
.换元法例1求函数y-sl九X亡05工1 五nx cosx的值34综上所述,当sina一_当豆na一1时,函数取到最大值,_、,,_~一:~,一11幽致取到最小沮二. 任4.用直线的斜率解令sin二 cosx一t,则乙任[一招,一IU(一1洒」,于是有 tZ一l SZnxc。‘x-一-百一’例4求函数y-sin二 招cos工 1的最小值. sin二 招y一cosx 1sinx一(一招)cosx一(一1)从而 tZ一1 Zt一1y一1 t--一了-,于是y任「_迎生)‘艺 .扼一1,一1少t」L一1,—1. 一乙一2.用三角函数的范围3 豆n口2十cos夕 如图,它的几何意义是圆了 犷一1上的点B与点A(一1,一而)连线的斜率.显然,当AB是圆O的切线时,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号