首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
下面是各类中学数学教材中一个重要的定理: 如果a、b都是实数,那么 a~2 b~2≥2ab (*)(当且仅当a=b时取等号) 笔者对此定理的结构特点很感兴趣,因为a~2 b~2≥2ab=ab ba,对实数a、b来说具有对称美——不等式(*)左右两边字母、项数及次数均相同.由此,极易产生如下普遍化联想。  相似文献   

2.
一个不等式变形的应用   总被引:1,自引:0,他引:1  
著名的Jacobsthal不等式定义为): 设x≥0,y≥0,对任意正整数n,则有x~n (n-1)y~n≥(nxy)~(n-1). 当y>0时,可变形为x~n/y~(n-1)≥nx-(n-1)y.(*) (*)式实际上也可看作一个降幂型不等式,从而看出对于一些次数较高的不等式,可以通过(*)式转化成低次来处理,下举例说明. 例1 设a,b,c为正数,求证: a~2/(b c) b~2/(c a) c~2/(a b)≥(a b c)/2. (第二届“友谊杯”国际数学邀请赛题) 证明 由(*)式,注意到 4a~2/(b c)=(2a)~2/(b c)≥2(2a)-(b c)=4a-b  相似文献   

3.
不等式a~2 b~2≥2ab成立的条件是:a,b∈R,当且仅当a=b时等号成立。又当a,b∈R_ 时有:a b≥2(1/ab),当且仅当a=b时等号成立。本文将介绍其变形在解题中的应用。  相似文献   

4.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

5.
在平均值不等式a~2 b~2≥2ab中,当b>0时,有a~2/b≥2a-b。 (当且仅当a=b时等号成立)。下面我们利用这个不等式给出竞赛中的一些不等式的新的证法。 例1 设a、b、c∈R~ ,且abc=1,求证  相似文献   

6.
在数学竞赛和数学杂志中,常常可以看到一些高难度的分式不等式的证明问题.我们通常用柯西不等式推论证明,然而若用"a~2/b≥2λa-λ~2b(a,b∈R~ )"来证明,则可以得到一种统一的解法且简单易行,还能解决更多的分式不等式的试题.下面举例说明.  相似文献   

7.
<正>众所周知,基本不等式指的是:对任意实数a、b,有不等式a2+b2≥2ab成立,当且仅当a=b时等号成立.我们将其称为实数型的基本不等式.有趣的是,将基本不等式中的实数a、b类比为向量a、b,也有向量形式下的基本不等式成立:a2+b2≥2a·b(*)  相似文献   

8.
高中代数下册第10页在推证基本不等式a~3 b~3 c~3≥3abc时附带证明了一个不等式:已知a、b、c∈R,则 a~2 b~2 c~2≥ab bc ca (1)(当且仅当a=b=c时取等号)  相似文献   

9.
将a~2 b~2≥2ab两边同时加上a~2 b~2并整理得: 变形I (a b)~2≤2(a~2 b~2) (a、b∈R,当且仅当ab时取等号)。 当a、b∈R~ 时,将a~2 b~2≥2ab两边同除以b得:  相似文献   

10.
不等式a b/2≥ab~(1/2)(a,b∈R )是中学数学重要不等式之一.其应用广泛,技巧性强,加强这一不等式的教学,对提高学生的分析问题、综合应用知识的证题能力和创造思维能力,以及诱发学生对数学的美感,增长他们创造数学美的能力是大有好处的.本文从不同的角度给出这一不等式的几种证法,以供参考. 定理如果a,b∈R ,那么a b/2≥ab~(1/2)(当且仅当a=b时,取“=”号). 证法一:(用二次根式的性质证) 当a≠b时,(a~(1/2)-b~(1/2))~2>0; 当a=b时,(a~(1/2)-b~(1/2))~2=0. 故(a~(1/2)-b~(1/2))~2≥0. 即a b-2ab(1/2)≥0. 故a b/2≥ab~(1/2). 证法二:(用面积证)如图1所示, 当 a≠b 时,S_(正方形ABCD)>4S_(矩形AB_1C_1D_1); 当a=b时,S_(正方形ABCD)=4S_(矩形AB_1C_1D_1), 故 S_(正方形ABCD)≥4S_(矩形AB_1C_1D_1) (a b)~2≥4aba b/2≥ab~(1/2).  相似文献   

11.
现行高一数学(人教版)第一册(下)第五章平面向量第119页有关向量数量积有如下一个性质(5):设a,b都是非零向量,则有|a·b|≤|a||b|(*),不等式(*)结构对称,蕴含丰富,具有广泛的应用.本文运用(*)式证明一类分式不等式,下举例说明.例1设a,b,c≥0,ab bc ca=31.求证:a2-1bc 1 b2-1ca  相似文献   

12.
中师数学课本《代数初等函数》第一册 P_(276)15题:已知 a>0,b>0,a b=20,问 a、b 为何值时,a~2 b~2最小?此题可用均值不等式求解如下:∵a~2 b~2≥2ab.∴2(a~2 b~2)≥a~2 b~2 2ab=(a b)~2.∴a~2 b~2≥((a b)~2)/2=200.当且仅当 a=b 时取“=”.∴a=b=10时,a~2 b~2取最小值200.然而,笔者发现,用柯西不等式解这个题将更简捷,  相似文献   

13.
现将基本不等式a2 +b2 ≥ 2ab推广如下 :定理 若x、y、a、b均为正数 ,则有xax+y+ ybx+y ≥ (x+ y)axby,( )当且仅当a=b时等号成立 .证明 由加权不等式得xax+yx+ y+ ybx+yx+ y≥ (ax+y) xx+y· (bx+y) yx+y,即xax+y+ ybx+y ≥ (x+y)axby,当且仅当ax+y =bx+y,即a=b时等号成立 .( )式可变形为ax+yby ≥ x+ yx ax - yxbx,( )利用上述变形 ( )式 ,来证明某些分式不等式 ,能起到化繁为简 ,化难为易之功效 .现举例说明如下 :例 1  (《数学通报》问题 871)设n∈N ,α、β∈(0 ,π2 ) ,求证 :sinn+2 αcosnβ + cosn+2 αsinnβ ≥ 1.证明 由 …  相似文献   

14.
本文给出一个非常简单的不等式,并用于解证几道国内外数学竞赛题。由a~2+b~2≥2ab(a,b∈R),即a~2≥b(2a-b)可得推论若a,b∈R且b>0,则a~2/b≥2a-b。当且仅当a b时取等号例1 已知x>0,(?)1,2…,n,求证: x_1/x_2+x_2/x_3+…+x_n/x_1≥x_1+x_2+…+x_n。 (1984年全国高中数学联赛试题) 证明:由推论得 x_1/x_2≥2x_1-x_2,x_2/x_3≥2x_2-x_3,…,x(?)/x_1≥2(?)-x_1。将以上n个同向不等式两边相加,得  相似文献   

15.
1从实数的性质说起由于实数有“大小可比性”,因此才有关于实数的“不等式”.由于实数的平方有“不负性”,因此才有了正数的“平均不等式”.设x∈R,则有x~2≥0,令x=a-b,则有(a-b)2≥0a~2 b~2≥2ab,用a替代a~2,用b替代b~2,则有a b≥2ab,于是得到(a b)/2≥ab(a=b时等号成立).这就是著名的平均不等式:2个正数的算术平均数不小于它们的几何平均数.显然,要证明这个不等式的正确性,可用配方法回到“实数平方的不负性”上.证明因为a2 b-ab=a-22ab b=12(a-b)2≥0a 2b≥ab.图解在平均不等式a2 b≥ab中,视a2 b和ab分别为2条线段长,可以解释它们之间的…  相似文献   

16.
正Pham Kim Hung不等式:设a,b,c≥0,a+b+c=2,证明:a~2b~2+b~2c2+c~2a~2+abc≤1①.当且仅当a=b=1,c=0及其循环排列时等号成立.这是Pham Kim Hung在《不等式的秘密》(第一卷)中提到并证明的一个有趣的不等式,文[2]将该不等式加强为  相似文献   

17.
1 竹外一枝斜更好若 a、b 为正数,由(a-b)~2≥0,(2a-b)~2≥0易得a~2b≥2a-b,a~2/b≥a-1/4b,这是两个平凡而应用广泛的不等式,容易知道存在无数组实数λ、μ,在 a、b 为正数的前提下使 a~2/b≥λa+μb恒成立,那么是否存在实数λ、μ,在 a、b 为正数的前提下使 a~2/b≤λa+μb恒成立呢?2 莺燕衔绿春来报假如存在这样的实数λ、μ,那么 a~2-λab-μb~2≤0对于任意正数 a、b 恒成立,显然这是不可能的,即对于正数 a、b,a~2/b≤λa+μb是条件不等式。不妨设 a,b  相似文献   

18.
文[1]给出如下不等式猜想:若a,b,C是正实数,且满足abc=1,则a~2/2+a+b~2/2+b+c~2/2+c≥1.很多数学杂志给出了这个不等式的证明,下面笔者再给出一个简单的证明,证法1:由二元均值不等式得a~2/2+a+2+a/9≥2/3a(?)a~2/2+a≥5a/9-2/9,同理得到b~2/2+b≥5b/9-2/9;c~2/2+c  相似文献   

19.
高中《数学》(试验修订本·必修)第二册(上)第11页习题6.2第1题是:求证:(a2+b)2≤a22+b2.将上述不等式变形可得a2+b2≥(a+2b)2.(*)不等式(*)可利用均值不等式直接证明,也可借助恒等式2(a2+b2)=(a+b)2+(a-b)2及(a-b)2≥0证明.不等式(*)有着广泛的使用价值,本文略举数例加以说明.一、证明不等式【例1】设c是直角三角形的斜边,a、b是两条直角边,求证:a+b≤2c.证明:由题设得a2+b2=c2,由不等式(*)得c2=a2+b2≥(a+2b)2,即(a+b)2≤2c2,亦即a+b≤2c.【例2】己知a、b∈R+,且a+b=1,求证:a+21+b+21≤2.证明:由不等式(*)及已知有2=(a+21)+(b+21)≥(a+21…  相似文献   

20.
文[1]给出如下不等式猜想:若a,b,C是正实数,且满足abc=1,则a~2/2+a+b~2/2+b+c~2/2+c≥1.很多数学杂志给出了这个不等式的证明,下面笔者再给出一个简单的证明,证法1:由二元均值不等式得a~2/2+a+2+a/9≥2/3a(?)a~2/2+a≥5a/9-2/9,同理得到b~2/2+b≥5b/9-2/9;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号