首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 671 毫秒
1.
研究了在可见光条件下,用实验室合成的Fe3+掺杂TiO2为催化剂催化降解酸性红染料,重点考察了Fe3+的掺杂量、Fe3+掺杂TiO2为催化剂的添加量、酸性红溶液的初始浓度、溶液pH值、光照时间对降解率的影响.实验结果表明,Fe3+掺杂比为1.5%、催化剂用量为1.5 g/L、pH为2.0、质量浓度为40 mg/L的酸性红100 mL,用白炽灯光照降解酸性红30 min,酸性红降解率可达98.45%.  相似文献   

2.
通过溶胶-凝胶法制备了稀土金属离子Y^3+掺杂的TiO2光催化剂,用XRD进行了分析和表征.以紫外灯为光源,通过对结晶紫的降解反应,研究了掺杂稀土离子钇的TiO2催化活性.结果表明,Y^3+的掺杂减小了TiO2的粒径,提高了TiO2的光催化活性,反应体系在Y^3+掺杂量为1.2%,催化剂用量1.5g/L,经500℃煅烧的条件下制备的Y^3+-TiO2催化下效果最好.降解浓度4.0mg/L结晶紫2小时后,降解率可达90%.  相似文献   

3.
TiO_2光催化降解孔雀石绿活性的影响因素   总被引:1,自引:0,他引:1  
对持久性难降解的有机染料孔雀石绿溶液的光催化降解过程进行研究,考察了孔雀石绿的初始浓度、催化剂的用量、溶液的初始pH值以及H2O2的加入量等条件变化对孔雀石绿的脱色率的影响.实验结果表明,光照时间和其他实验条件均相同时,孔雀石绿溶液的初始浓度为2 mg.L-1和5 mg.L-1时其脱色率较高;最佳的催化剂用量为1 g.L-1;溶液初始pH值为8的弱碱条件下降解效果较好;氧化剂H2O2的加入量为0.1 Vt.%时光催化反应效果较佳.  相似文献   

4.
研究了催化剂、光源、溶液初始浓度、溶液初始pH值等因素对甲基橙光催化氧化降解反应的影响.实验结果表明,最佳实验条件为:以灼烧的TiO2为催化剂,催化剂的投加量为0,8g·L^-1,采用浸波式紫外灯作光源,甲基橙初始浓度为20mg·L^-1,溶液初始pH=3.该实验条件下,甲基橙一小时脱色率可达81.3%.该研究可为偶氮染料降解提供新的思路.  相似文献   

5.
TiO2/Al2O3超声降解高浓度亚甲基蓝溶液性能研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法在Al2O3表面负载TiO2制取TiO2/Al2O3催化剂,以亚甲基蓝为研究对象考察了TiO2/Al2O3催化剂的煅烧温度、亚甲基蓝反应初始浓度、介质酸度及TiO2/Al2O3催化剂用量对TiO2/Al2O3超声波降解脱色高浓度亚甲基蓝溶液的影响实验发现:煅烧温度对TiO2/Al2O3的活性有很大影响,从而对TiO2/Al2O3催化剂超声波降解脱色高浓度亚甲基蓝溶液有较大制约。煅烧温度在480℃时最佳;亚甲基蓝溶液的超声降解脱色速率随初始浓度的增大而降低;随介质酸度的增加,降解速率加快,中性条件下降解速率最低,当PH值呈碱性时,降解速率又有所提高。在TiO2/Al2O3催化剂作用下,超声波降解脱色高浓度亚甲基蓝溶液效果较好,能够有效的完成高浓度亚甲基蓝溶液的降解脱色。因此,TiO2/Al2O3催化剂超声波降解脱色高浓度亚甲基蓝溶液的方法,具有广阔的应用前景。  相似文献   

6.
纳米Ti0_2光催化氧化法处理碱性紫5BN染料废水的研究   总被引:2,自引:0,他引:2  
以脱色率为主要考察指标,研究了纳米TiO2光催化氧化法处理三苯甲烷染料碱性紫5BN的最佳工艺条件。试验结果表明,采用紫外光源为20 W的KL-1型光催化反应器,在平均粒径为30 nm的TiO2悬浮体系中,TiO2能够高效脱除碱性紫5BN的色度。纳米TiO2光催化降解碱性紫5BN、活性艳红K-2BP,在KL-1型紫外光实验装置上的最佳工艺条件为:碱性紫5BN在初始浓度80 mg/L时,TiO2用量1.0 g/L,pH值为3,外加催化剂H2O2加入量为2.5 ml/L,反应2.5 h,碱性紫5BN最大脱色率为98%。本试验为进一步进行碱性紫5BN的工业化处理提供了科学依据,并为纳米TiO2光催化氧化法处理其他染料废水提供借鉴。  相似文献   

7.
利用辉光放电等离子体技术降解橙黄G偶氮染料废水,借助紫外光谱分析了其降解过程,考察了多种因素对其降解效果的影响.结果表明,提高染料初始浓度和电解质浓度可提高橙黄G的降解率.改变溶液的初始pH值,橙黄G的降解率随溶液的初始pH值升高而增加.橙黄G降解60min后,无催化剂时,降解率达到71.68%;在催化剂Fe^2+和Mn^2+存在时降解率达到92.48%和89.69%,COD去除率为95.85%和63.44%;H2O2存在时,降解率达到78.91%.  相似文献   

8.
以钛酸四丁酯为钛源,硝酸银为银源,采用溶胶-凝胶法制备了掺银的纳米TiO2。用X射线衍射和透射电子显微镜对材料进行了表征,以掺银TiO2为催化剂对甲基橙进行了光催化降解实验。考查了催化剂掺银量、催化剂总用量、甲基橙溶液浓度及降解时间对甲基橙降解率的影响。结果表明,制得的样品颗粒细小均匀,3%掺银TiO2样品比表面积高达132.2 m2/g。掺银TiO2中的银钛原子摩尔比以及催化剂用量均影响光催化活性,银的掺杂量为3%时,纳米TiO2光催化活性最高,3%掺银TiO2催化剂最佳用量为0.3g/L。降解率随甲基橙初始浓度的增加而降低,随光照降解时间的增加而提高,光照20~30min之间,降解速度最快。  相似文献   

9.
采用US/Cu^2+/H2O2体系,超声催化降解罗丹明B模拟废水溶液。考察了超声功率、超声频率、超声时间、初始pH值、H2O2的用量、CuSO4的投加量以及罗丹明B溶液的初始浓度对脱色率的影响。通过正交实验,得出了主次因素,并得出了最佳反应条件。还对单独使用H2O2、H2O2/CuSO4体系,单独使用超声技术以及US/H2O2体系的处理效果进行了分析。  相似文献   

10.
采用回流沉淀法、微波模板辅助法和水热法分别制备了TiO2纳米颗粒,采用XRD对催化剂进行了表征。考察了不同制备方法的催化剂光催化活性。实验结果表明,3种方法制备的TiO2对甲基橙溶液的光催化降解能力较高,采用微波模板辅助法制备的TiO2催化剂催化活性最高,对甲基橙的降解效果最好。催化剂用量为0.4 g,紫外光照射60 min,浓度为12 mg/L的甲基橙溶液降解率为80%。  相似文献   

11.
利用酸催化的快速溶胶-凝胶法(sol-gel)制备了一系列不同La3+掺杂量(x=0.01%~3%)的TiO2复合光催化剂;在太阳光条件下,以亚甲基蓝溶液的光催化降解为模型反应,研究了染料的光催化降解动力学行为,考察了催化剂投加量和La3+掺杂量对复合光催化剂活性的影响.结果表明,亚甲基蓝的光催化降解反应遵循Langmuir-Hinshelwood动力学模型,表观反应速率常数随着反应体系中催化剂用量和La3+掺杂量的不同而不同,均存在一个最佳值.在本实验条件下,当催化剂投加量为1.5g/L,La3+掺杂量为0.5%时,测得表观反应速率常数为2.1.×10-2mg(L·min)-1,反应120min后亚甲基蓝的降解率可达91.55%.  相似文献   

12.
稀土钐改性TiO2光催化性能有很大的争议,基于此采用溶胶-凝胶法制备了不同掺杂量和不同温度下煅烧的光催化剂,通过XRD和亚甲基蓝的降解实验,探讨了煅烧温度、空气流速、催化剂用量和掺杂量对亚甲基蓝的降解效果。结果表明:当煅烧温度为500℃,掺杂Sm^3+为1.2%,空气流速达到1.3L/min,催化剂用量为1.5g/L时,催化性能达到最好。  相似文献   

13.
竹炭-有机复合吸附剂对Cu~(2+)吸附行为研究   总被引:3,自引:2,他引:1  
研究了竹炭及其改性体粒径、用量、吸附时间、温度及铜离子(Cu2+)初始浓度等因素对Cu2+吸附效果的影响。结果表明:竹炭及其改性体对Cu2+吸附率随粒径减小而增大,用量增加而增大;Cu2+初始浓度增大,吸附率减小;对Cu2+吸附平衡约2h;最佳吸附温度为20—40℃,pH为3—4。改性体2效果最佳,30—50目粒径时去除率达99%以上,当溶液浓度为1.26g/L时,其比吸附量最大,为95.8mg/g。  相似文献   

14.
自行制备负载型TiO2催化剂,对苯胺水样进行了光助催化。探讨了初始底物浓度、催化剂用量、光照强度及微量H2O2对降解率的影响。结果显示,TiO2光助催化降解苯胺效果良好,当苯胺浓度低于2mmol.L-1时,降解率在98%以上,催化剂量、光源强度和微量H2O2都可提高苯胺的降解率。进一步研究可知苯胺经催化降解后,苯环被打开,有助于后续的生化处理。  相似文献   

15.
采用溶胶凝胶法合成纳米二氧化钛光催化剂,X衍射及红外表征显示银已进入催化剂晶胞中.以汞灯模拟紫外光,氙灯模拟自然条件下太阳光催化降解酸性红B染料,结果表明1%和2%银掺入提高了纳米二氧化钛的可见光催化效能,使得催化剂的吸光波长范围红移,X衍射表征及催化剂筛选实验表明2%Ag-TiO2为锐钛矿晶型,具有较高催化活性,常温常压500 w氙灯照射下,催化剂用量为1.5 g/L、模拟废水pH=4、光照150 min、模拟废水浓度为50 mg/L时,酸性红B染料模拟废水的脱色率达90%,矿化率达60%.  相似文献   

16.
凝胶法制备了Nd离子掺杂TiO2纳米颗粒,采用X射线衍射(XRD)表征了催化剂的晶体结构·以甲基橙为有机底物,测试了Nd掺杂TiO2纳米颗粒光催化活性·结果表明:二氧化钛的主要晶相为锐钛矿相,Nd掺杂可阻止晶相转移·Nd掺杂量为1·5%时,催化活性最高,达到90%以上·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号