首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
包覆型纳米铁颗粒的制备新进展   总被引:5,自引:0,他引:5  
罗驹华  张振忠  张少明 《科技通报》2006,22(4):557-561,566
包覆型纳米铁颗粒的制备对于基础磁性研究和实际工程应用来说都是非常有意义的。对于基础研究.包覆层阻止了颗粒聚集长大和表面氧化;对于临床应用,包覆层阻止了酸性环境对颗粒的侵蚀;对于软磁应用,包覆层不仅作为绝缘相增大了电阻,而且作为粘结剂使纳米颗粒易于加压成型。在过去的几十年里。国内外许多学者开展了对包覆型纳米铁颗粒的制备、结构和磁性能的研究。本文着重阐述了包覆型纳米铁颗粒的制备方法,并指出了这一领域今后研究的方向。  相似文献   

2.
As a non-invasive therapeutic method without penetration-depth limitation, magnetic hyperthermia therapy (MHT) under alternating magnetic field (AMF) is a clinically promising thermal therapy. However, the poor heating conversion efficiency and lack of stimulus–response obstruct the clinical application of magnetofluid-mediated MHT. Here, we develop a ferrimagnetic polyethylene glycol-poly(2-hexoxy-2-oxo-1,3,2-dioxaphospholane) (mPEG-b-PHEP) copolymer micelle loaded with hydrophobic iron oxide nanocubes and emodin (denoted as EMM). Besides an enhanced magnetic resonance (MR) contrast ability (r2 = 271 mM−1 s−1) due to the high magnetization, the specific absorption rate (2518 W/g at 35 kA/m) and intrinsic loss power (6.5 nHm2/kg) of EMM are dozens of times higher than the clinically available iron oxide nanoagents (Feridex and Resovist), indicating the high heating conversion efficiency. Furthermore, this composite micelle with a flowable core exhibits a rapid response to magnetic hyperthermia, leading to an AMF-activated supersensitive drug release. With the high magnetic response, thermal sensitivity and magnetic targeting, this supersensitive ferrimagnetic nanocomposite realizes an above 70% tumor cell killing effect at an extremely low dosage (10 μg Fe/mL), and the tumors on mice are completely eliminated after the combined MHT–chemotherapy.  相似文献   

3.
In this study, we demonstrate a new perspective on in vitro assessment method for evaluating quantum dot (QD) toxicity by using microfluidics technology. A new biomimetic approach, based on the flow exposure condition, was applied in order to characterize the cytotoxic potential of QD. In addition, the outcomes obtained from the flow exposure condition were compared to those of the static exposure condition. An in vitro cell array system was established that used an integrated multicompartmented microfluidic device to develop a sensitive flow exposure condition. QDs modified with cetyltrimethyl ammonium bromide∕trioctylphosphine oxide were used for the cytotoxicity assessment. The results suggested noticeable differences in the number of detached and deformed cells and the viability percentages between two different exposure conditions. The intracellular production of reactive oxygen species and release of cadmium were found to be the possible causes of QD-induced cytotoxicity, irrespective of the types of exposure condition. In contrast to the static exposure, the flow exposure apparently avoided the gravitational settling of particles and probably assisted in the homogeneous distribution of nanoparticles in the culture medium during exposure time. Moreover, the flow exposure condition resembled in vivo physiological conditions very closely, and thus, the flow exposure condition can offer potential advantages for nanotoxicity research.  相似文献   

4.
A broad range of organisms, from prokaryotes to higher animals, have the ability to sense and utilize Earth''s geomagnetic field—a behavior known as magnetoreception. Although our knowledge of the physiological mechanisms of magnetoreception has increased substantially over recent decades, the origin of this behavior remains a fundamental question in evolutionary biology. Despite this, there is growing evidence that magnetic iron mineral biosynthesis by prokaryotes may represent the earliest form of biogenic magnetic sensors on Earth. Here, we integrate new data from microbiology, geology and nanotechnology, and propose that initial biomineralization of intracellular iron nanoparticles in early life evolved as a mechanism for mitigating the toxicity of reactive oxygen species (ROS), as ultraviolet radiation and free-iron-generated ROS would have been a major environmental challenge for life on early Earth. This iron-based system could have later been co-opted as a magnetic sensor for magnetoreception in microorganisms, suggesting an origin of microbial magnetoreception as the result of the evolutionary process of exaptation.  相似文献   

5.
One of the most significant challenges implementing colloidal magnetic nanoparticles in medicine is the efficient heating of microliter quantities by applying a low frequency alternating magnetic field. The ultimate goal is to accomplish nonsurgically the treatment of millimeter size tumors. Here, we demonstrate the synthesis, characterization, and the in vitro as well as in vivo efficiency of a dextran coated maghemite (γ-Fe2O3) ferrofluid with an exceptional response to magnetic heating. The difference to previous synthetic attempts is the high charge of the dextran coating, which according to our study maintains the colloidal stability and good dispersion of the ferrofluid during the magnetic heating stage. Specifically, in vitro 2 μl of the ferrofluid gives an outstanding temperature rise of 33 °C within 10 min, while in vivo treatment, by infusing 150 μl of the ferrofluid in animal model (rat) glioma tumors, causes an impressive cancer tissue dissolution.  相似文献   

6.
Not many years ago it was quite generally believed that iron was unable to follow rapid magnetic changes. Experiments which showed an apparent decrease in the permeability of the iron with an increase in the frequency of the magnetic cycle furnished a basis for a theory that iron was magnetically sluggish. Further and more accurate experiments proved, however, that the effects which had previously been ascribed to a peculiarity of the material were in reality caused by eddy currents in the sample. Theoretical calculations were made which demostrated that eddy currents in an iron test piece increased as the square of the frequency and that for even the lower frequencies it was necessary to use quite thin laminations in magnetic circuits in order to eliminate deleterious effects. Furthermore, it was found that due to eddy currents and the magnetic properties of iron, the magnetization in high frequency fields was confined to a thin surface layer of the piece. This “Magnetic Skin Effect” reduced the cross section of the iron which was magnetically active even though the laminations were extremely thin. Careful experimental measurements compared with theoretical calculations proved that the real permeability of iron remained unchanged at frequencies up to about 106 and that previous results had been is serious error due to neglect of the factors mentioned. This fact having been established, efforts were made to see what practical use could be made of iron in high frequency work and to that end some extensive experimental investigations of the saturation curves and core losses were made upon specimens laminated as thinly as was commercially practicable. The resulting data have furnished a basis for design.It is a demostrated fact that the permeability of all metals is unity for the magnetic cycles imposed upon them by heat and light waves. In the region between frequencies of about 106, where the true permeability of iron is practically the same as at zero frequency, and frequencies of about 1010 where the true permeability of iron approaches unity, the experimental values of μ decrease smoothly with the frequency. What happens to μ in the range of frequencies between the lingest heat waves and the shortest Hertzian waves which have yet been made is a question which has many interesting features but which has not yet yielded to the experimenter.  相似文献   

7.
Chemotherapy drugs, used for prevention of uncontrolled cell proliferation in certain tissues as well as inducing apoptosis in tumor cells, are important candidates for treatment of cancer. The synthesized 2-amino-4H-chromene-3-carbonitrile derivatives effective on cancerous cells resistant to other drugs such as Paclitaxel were used due to their ability in induction of apoptosis. The growth inhibitory and inducing apoptosis activities were determined. In order to make it target-oriented, the best compound was conjugated with gold nanoparticles (NPs) by aspartic acid with chemical reduction method. Cytotoxicity effect of 2-amino-4H-chromene-3-carbonitrile derivatives against the T47D breast cancer cell line was determined by MTT assay. The synthesis of gold NPs was confirmed by transmission electron microscopy, UV–Vis and dynamic light scattering. To assess the effects of compounds on the process of apoptosis, staining methods with acridine orange–ethidium bromide and Hoechst staining by fluorescence microscopy and DNA fragmentation by the diphenylamine method were used. The synthesized compounds containing two NH2 groups on benzene rings, demonstrated more cytotoxicity effect. The effect of conjugation with gold NPs and the induction of apoptosis were studied with the best compound. The cytotoxicity effects of the synthesized 2-amino-4H-chromene-3-carbonitrile compounds were changed by replacement of NO2 group on thiol ring with different chemical groups on the benzene ring. Analyses of treated cell lines by conjugated and non-conjugated forms of compounds verified their ability in inducing apoptosis while conjugated form demonstrated higher apoptosis.  相似文献   

8.
Antioxidant and Anticancer Activities of Selected Persian Gulf Algae   总被引:1,自引:0,他引:1  
In the present study, the effect of red (Gracillaria corticata), green (Ulva fasciata) and brown (Sargassum ilicifolium) seaweeds alcoholic extract, against five important human cancer cell lines (MCF-7, MDA-MB-231, HeLa, HepG2, and HT-29) proliferation, apoptosis and cell cycle arrest were evaluated. The reducing activity and total polyphenol content were also investigated. MTT assay was used for cytotoxicity test. Morphological alterations were examined using phase contrast, fluorescent and electron microscopy. All the extracts were antiproliferative against all the cancer cell lines, dose-dependently, with G. corticata methanol extract (GCME) having the greatest inhibition activity against MCF-7 cell line. The percentage of apoptosis increased from 18 to 78 %. The cell cycle analysis also showed that GCME can induce apoptosis which confirm by TEM. Algal extract reducing activities were as follows: G. corticata > S. ilicifolium > U. fasciata. The GCME is a good source of potential complementary and alternative functional food for prevention and treatment of cancer.  相似文献   

9.
BackgroundIron magnetic nanoparticles have attracted much attention. They have been used in enzyme immobilization because of their properties such as product is easily separated from the medium by magnetic separation. The present work was designed to immobilize horseradish peroxidase on Fe3O4 magnetic nanopraticles without modification.ResultsIn the present study, horseradish peroxidase (HRP) was immobilized on non-modified Fe3O4 magnetic nanoparticles. The immobilized HRP was characterized by FT-IR spectroscopy, scanning electron microscopy, and energy dispersive X-ray. In addition, it retained 55% of its initial activity after 10 reuses. The optimal pH shifted from 7.0 for soluble HRP to 7.5 for the immobilized HRP, and the optimal temperature shifted from 40°C to 50°C. The immobilized HRP is more thermostable than soluble HRP. Various substrates were oxidized by the immobilized HRP with higher efficiencies than by soluble HRP. Km values of the soluble and immobilized HRP were 31 and 45 mM for guaiacol and 5.0 and 7.0 mM for H2O2, respectively. The effect of metals on soluble and immobilized HRP was studied. Moreover, the immobilized HRP was more stable against high concentrations of urea, Triton X-100, and isopropanol.ConclusionsPhysical immobilization of HRP on iron magnetic nanoparticles improved the stability toward the denaturation induced by pH, heat, metal ions, urea, detergent, and water-miscible organic solvent.  相似文献   

10.
Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices'' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.  相似文献   

11.
BackgroundSuper-paramagnetic iron oxide nanoparticles (SPION) contain a chemotherapeutic drug and are regarded as a promising technique for improving targeted delivery into cancer cells.ResultsIn this study, the fabrication of 5-fluorouracil (5-FU) was investigated with loaded Dextran (DEX-SPION) using the co-precipitation technique and conjugated by folate (FA). These nanoparticles (NPs) were employed as carriers and anticancer compounds against liver cancer cells in vitro. Structural, magnetic, morphological characterization, size, and drug loading activities of the obtained FA-DEX-5-FU-SPION NPs were checked using FTIR, VSM, FESEM, TEM, DLS, and zeta potential techniques. The cellular toxicity effect of FA-DEX-5-FU-SPION NPs was evaluated using the MTT test on liver cancer (SNU-423) and healthy cells (LO2). Furthermore, the apoptosis measurement and the expression levels of NF-1, Her-2/neu, c-Raf-1, and Wnt-1 genes were evaluated post-treatment using flow cytometry and RT-PCR, respectively. The obtained NPs were spherical with a suitable dispersity without noticeable aggregation. The size of the NPs, polydispersity, and zeta were 74 ± 13 nm, 0.080 and −45 mV, respectively. The results of the encapsulation efficiency of the nano-compound showed highly colloidal stability and proper drug maintenance. The results indicated that FA-DEX-5-FU-SPION demonstrated a sustained release profile of 5-FU in both phosphate and citrate buffer solutions separately, with higher cytotoxicity against SNU-423 cells than against other cells types. These findings suggest that FA-DEX-SPION NPs exert synergistic effects for targeting intracellular delivery of 5-FU, apoptosis induction, and gene expression stimulation.ConclusionsThe findings proved that FA-DEX-5-FU-SPION presented remarkable antitumor properties; no adverse subsequences were revealed against normal cells.How to cite: Mahdia SA, Kadhimb AA, Albukhaty S, et al. Gene expression and apoptosis response in hepatocellular carcinoma cells induced by biocompatible polymer/magnetic nanoparticles containing 5-fluorouracil. Electron J Biotechnol 2021;52. https://doi.org/10.1016/j.ejbt.2021.04.001  相似文献   

12.
A study of the effect of aggregate size on the resuscitation of dormant M. smegmatis was conducted by constructing cell aggregates with defined sizes and shapes using dielectrophoresis and monitoring the resuscitation process under controlled laboratorial conditions in a long-term cell feeding system. Differently sized cell aggregates were created on the surface of indium tin oxide coated microelectrodes, their heights and shapes controlled by the strength of the induced electric field and the shape of the microelectrodes. Both two-dimensional (ring-patterned) and three-dimensional cell aggregates were produced. The cell aggregates were maintained under sterile conditions at 37 °C for up to 14 days by continuously flushing Sauton’s medium through the chamber. Resuscitation of dormant M. smegmatis was evaluated by the production of the fluorescent dye 5-cyano-2,3-ditolyltetrazolium chloride. The results confirm that the resuscitation of dormant M. smegmatis is triggered by the accumulation of a resuscitation promoting factor inside the aggregates by diffusion limitation.  相似文献   

13.
Nitric oxide (NO) a free radical having both cytoprotective as well as tumor promoting agent is formed from l-arginine by converting it to l-citrulline via nitric oxide synthase enzymes. The reaction product of nitric oxide with superoxide generates potent oxidizing agent, peroxynitrite which is the main mediator of tissue and cellular injury. Peroxynitrite is reactive towards many biomolecules which includes amino acids, nucleic acid bases; metal containing compounds, etc. NO metabolites may play a key role in mediating many of the genotoxic/carcinogenic effects as DNA damage, protein or lipid modification, etc. The basic reactions of nitric oxide can be divided as direct effect of the radical where it alone plays a role in either damaging or protecting the cell milieu and an indirect effect in which the byproducts of nitric oxide formed by convergence of two independent radical generating pathways play the role in biological reactions which mainly involve oxidative and nitrosative stress. Nitric oxide is also capable of directly interacting with mitochondria through inhibition of respiration or by permeability transition. Reaction of nitric oxide with metal ions include its direct interaction with the metals or with oxo complexes thereby reducing them to lower valent state. Excessive production of nitric oxide can be studied by inhibiting the synthetic pathway of nitric oxide using both selective or specific nitric oxide synthase inhibitor or non-selective nitric oxide synthase inhibitor with respect to isoforms of nitric oxide.  相似文献   

14.
Herein proposed is a simple system to realize hands-free labeling and simultaneous detection of two human cell lines within a microfluidic device. This system was realized by novel covalent immobilization of pH-responsive poly(methacrylic acid) microgels onto the inner glass surface of an assembled polydimethylsiloxane/glass microfluidic channel. Afterwards, selected thiophene labeled monoclonal antibodies, specific for recognition of CD4 antigens on T helper/inducer cells and CD19 antigens on B lymphocytes cell lines, were encapsulated in their active state by the immobilized microgels. When the lymphocytes suspension, containing the two target subpopulations, was flowed through the microchannel, the physiological pH of the cellular suspension induced the release of the labeled antibodies from the microgels and thus the selective cellular staining. The selective pH-triggered staining of the CD4- and CD19-positive cells was investigated in this preliminary experimental study by laser scanning confocal microscopy. This approach represents an interesting and versatile tool to realize cellular staining in a defined module of lab-on-a-chip devices for subsequent detection and counting.  相似文献   

15.
A new strategy for magnetically manipulating and isolating adherent cells with extremely high post-collection purity and viability is reported. Micromolded magnetic elements (termed microrafts) were fabricated in an array format and used as culture surfaces and carriers for living, adherent cells. A poly(styrene-co-acrylic acid) polymer containing well dispersed magnetic nanoparticles was developed for creating the microstructures by molding. Nanoparticles of γFe(2)O(3) at concentrations up to 1% wt.∕wt. could be used to fabricate microrafts that were optically transparent, highly magnetic, biocompatible, and minimally fluorescent. To prevent cellular uptake of nanoparticles from the magnetic polymer, a poly(styrene-co-acrylic acid) layer lacking γFe(2)O(3) nanoparticles was placed over the initial magnetic microraft layer to prevent cellular uptake of the γFe(2)O(3) during culture. The microraft surface geometry and physical properties were altered by varying the polymer concentration or layering different polymers during fabrication. Cells plated on the magnetic microrafts were visualized using standard imaging techniques including brightfield, epifluorescence, and confocal microscopy. Magnetic microrafts possessing cells of interest were dislodged from the array and efficiently collected with an external magnet. To demonstrate the feasibility of cell isolation using the magnetic microrafts, a mixed population of wild-type cells and cells stably transfected with a fluorescent protein was plated onto an array. Microrafts possessing single, fluorescent cells were released from the array and magnetically collected. A post-sorting single-cell cloning rate of 92% and a purity of 100% were attained.  相似文献   

16.
BackgroundThe increasing rate of breast cancer globally requires extraordinary efforts to discover new effective sources of chemotherapy with fewer side effects. Glutaminase-free l-asparaginase is a vital chemotherapeutic agent for various tumor malignancies. Microorganisms from extreme sources, such as marine bacteria, might have high l-asparaginase productivity and efficiency with exceptional antitumor action toward breast cancer cell lines.Resultsl-Asparaginase-producing bacteria, Bacillus velezensis isolated from marine sediments, were identified by 16S rRNA sequencing. l-Asparaginase production by immobilized cells was 61.04% higher than that by free cells fermentation. The significant productivity of enzyme occurred at 72 h, pH 6.5, 37°C, 100 rpm. Optimum carbon and nitrogen sources for enzyme production were glucose and NH4Cl, respectively. l-Asparaginase was free from glutaminase activity, which was crucial medically in terms of their severe side effects. The molecular weight of the purified enzyme is 39.7 KDa by SDS-PAGE analysis and was ideally active at pH 7.5 and 37°C. Notwithstanding, the highest stability of the enzyme was found at pH 8.5 and 70°C for 1 h. The enzyme kinetic parameters displayed Vmax at 41.49 μmol/mL/min and a Km of 3.6 × 10−5 M, which serve as a proof of the affinity to its substrate. The anticancer activity of the enzyme against breast adenocarcinoma cell lines demonstrated significant activity toward MDA-MB-231 cells when compared with MCF-7 cells with IC50 values of 12.6 ± 1.2 μg/mL and 17.3 ± 2.8 μg/mL, respectively.ConclusionThis study provides the first potential of glutaminase-free l-asparaginase production from the marine bacterium Bacillus velezensis as a prospect anticancer pharmaceutical agent for two different breast cancer cell lines.How to cite: Mostafa Y, Alrumman S, Alamri S, et al. Enhanced production of glutaminase-free L-asparaginase by marine Bacillus velezensis and cytotoxic activity against breast cancer cell lines. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.ejbt.2019.10.001.  相似文献   

17.
BackgroundBioremoval of phenolic compounds using fungi and bacteria has been studied extensively; nevertheless, trinitrophenol bioremediation using modified Oscillatoria cyanobacteria has been barely studied in the literature.ResultsAmong the effective parameters of bioremediation, algal concentration (3.18 g·L−1), trinitrophenol concentration (1301 mg·L−1), and reaction time (3.75 d) were screened by statistical analysis. Oscillatoria cyanobacteria were modified by starch/nZVI and starch/graphene oxide in a bubble column bioreactor, and their bioremoval efficiency was investigated. Modifiers, namely, starch/zero-valent iron and starch/GO, increased trinitrophenol bioremoval efficiency by more than 10% and 12%, respectively, as compared to the use of Oscillatoria cyanobacteria alone.ConclusionsIt was found that starch/nano zero-valent iron and starch/GO could be applied to improve the removal rate of phenolic compounds from the aqueous solution.How to cite: Bavandi R, Emtyazjoo M, Saravi HN, et al. Study of nano-structure zero-valent iron and graphene-oxid capability onbioremoval of trinitrophenol from wastewater in a bubble column bioreactor. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.02.003.  相似文献   

18.
This paper is a review of the changes brought about in the magnetic properties of “iron” during the period 1870 to 1928 and shows the absurdity of using “iron” as a standard for comparison. The latest (1928) value for the initial permeability (μ0) of “iron” is given as 1150, its maximum permeability (μmax) as 61,000, and its hysteresis loss (Wh) as 300 ergs per cubic centimeter per cycle for B = 10,000 gausses. The corresponding values prior to 1900 were: μ0 = 250 μmax = 2600, Wh = 3,000.  相似文献   

19.
Studying the effects of pharmacological agents on human endothelium includes the routine use of cell monolayers cultivated in multi-well plates. This configuration fails to recapitulate the complex architecture of vascular networks in vivo and does not capture the relationship between shear stress (i.e. flow) experienced by the cells and dose of the applied pharmacological agents. Microfluidic platforms have been applied extensively to create vascular systems in vitro; however, they rely on bulky external hardware to operate, which hinders the wide application of microfluidic chips by non-microfluidic experts. Here, we have developed a standalone perfusion platform where multiple devices were perfused at a time with a single miniaturized peristaltic pump. Using the platform, multiple micro-vessel networks, that contained three levels of branching structures, were created by culturing endothelial cells within circular micro-channel networks mimicking the geometrical configuration of natural blood vessels. To demonstrate the feasibility of our platform for drug testing and validation assays, a drug induced nitric oxide assay was performed on the engineered micro-vessel network using a panel of vaso-active drugs (acetylcholine, phenylephrine, atorvastatin, and sildenafil), showing both flow and drug dose dependent responses. The interactive effects between flow and drug dose for sildenafil could not be captured by a simple straight rectangular channel coated with endothelial cells, but it was captured in a more physiological branching circular network. A monocyte adhesion assay was also demonstrated with and without stimulation by an inflammatory cytokine, tumor necrosis factor-α.  相似文献   

20.
Usually sickle cell traits are asymptomatic but co-existence of various factrors may alter the clinical as well as biochemical levels. In India sickle cell traits are neglected condition. Here we are presenting the alpha deletion in association with low serum iron and increased HbF level with Xmn-1 carriers in sickle cell traits. Sickle traits with alpha deletions had significantly low level of serum iron (P-value <0.05) with low level of reticulocytes and red cell indices while Xmn-1 polymorphism associated with increased HbF level. Study concludes low serum iron associated with alpha deletions and high level of HbF associated with Xmn-1 polymorphism in sickle cell traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号