首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

2.
解数学题,学生是多么期盼掌握一些“战无不胜”的技法。本文联用sin~2θ+cos~2θ=1与二维柯西不等式解题,其构思别致,变换灵巧,可谓学生所盼的“阳春白雪”。二维柯西不等式是:ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2),a、b、c、d∈R当且仅当a/c=b/d时,等式成立。(现行高中《代数》课本下册P.14)。一求值(或证明条件不等式) 例1 若α、β∈(0,π),且cosα+cosβ-cos(α+β)=3/2,求α、β。解:已知即为(1-cosα)cosβ+sinα·sinβ+cosα=3/2,于是:(cos~2β+sin~2;xx2)[1-cosα)~2+sin~α]≥[(1-cosα)cosβ+sinα·sinβ]~2=(3/2-cosα)~2即(2cosα-1)~2≤0,cosα=1/2,α=π/3,同理知β=π/3。(α、β∈(0,π)) 例2 已知msinθ-ncosθ=(m~2+n~2)~(1/2) (1)sin~2θ/α~2+cos~2θ/b~2=1/(m~2+n~2) (2)  相似文献   

3.
集锦     
正余弦和差化积公式的向量证明吴爱龙余建国(江西省丰城中学331100)曾兵(江西省丰城市第一中学331100)文[1]利用面积相等关系给出了正弦和差化积公式的一种构造证法,本文再给出正余弦和差化积公式的向量证法,供参考.图1证明如图1,设OA=(cosα,sinα),OB=(cosβ,sinβ)(0<β<α<π),则OA+OB=(cosα+cosβ,sinα+sinβ);OA-OB=(cosα-cosβ,sinα-sinβ).又以OA,OB为邻边作OACB,因为OA=OB=1,所以四边形OACB为菱形,作OE=BA,设AB与OC相交于D,则BA⊥OC,∠COB=α-2β,∠COx=α+2β,∠EOx=π2+∠COx=π2+α+2β;OC=2·OD=2co…  相似文献   

4.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

5.
本刊文[1]用了10种方法,通过15个例题说明了多元函数最值的求法.受此启发,本文将用向量中的重要不等式a2·b2≥(a·b)2来解决部分多元函数最值问题,权作对文[1]的补充.我们把a和b都看成n维向量(n≥2),它们的坐标表示分别是a=(a1,a2,…,an),b=(b1,b2,…,bn),定义向量a和b的数量积a·b=a1b1+a2b2+…+anbn,则a=a12+a22+…+an2,b=b12+b22+…+bn2,由柯西不等式:(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2,推得a2·b2≥(a·b)2.下面举例说明其应用.例1已知3a2+2b2=5,试求y=2a2+1·b2+2的最大值.解由题意,将已知条件等价变形为32(2a2…  相似文献   

6.
一、问题的提出 看这样一个数学问题:若sinαcosβ=1/2,求cosαsinβ的取值范围. 一个典型的错误解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2. 它的错误原因在于找到的约束条件不全面,仅考虑了-1≤sin(α+β)≤1.许多参考书上给出的正确的解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2, 因为sin(α-β)=sinαcosβ-cosαsinβ=(1-cosαsinβ) ∈[-1,1].  相似文献   

7.
在平面三角中有与代数中的平方差公式a~2-b~2=(a+b)(a-b)形似的恒等式: sin~2α-sin~2β=cos~2β-cos~2α=sin(α+β)·sin(α-β),(1)与 cos~2α-sin~2β=cos~2β-sin~2α=cos(α+β)·cos(α-β)。(2) 这两组恒等式不妨叫做三角中的“平方差”公式。熟记这两组恒等式对于解答某些三角问题、几何问题或综合题会有所帮助。恒等式(1)证明如下: ∵sin~2α-sin~2β=1/2(1-cos2α)-1/2(1-cos2β)=1/2(cos2β-cos2α)=sin(α+β)sin(α-β),  相似文献   

8.
当今高考数学命题注重知识的整体性和综合性,重视知识的交汇性.向量是新课程中新增的内容,具有代数与几何形式的双重身份,它是新、旧知识的一个重要交汇点,成为联系这些知识的桥梁.向量与三角函数的交汇是当今高考命题的必然趋势,以下几例,重在为备考中的考生总结题型规律,探究解题策略.一、向量与三角函数性质的交汇例1已知向量a=(cos3x2,sin3x2),b=(cosx2,-sinx2),且x[0,π2].求:(1)a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-32,求λ的值.解(1)a·b=cos3x2·cosx2-sin3x2·sinx2=cos2x.|a+b|=(cos3x2+cosx2)2+(sin3x2-sinx2)2…  相似文献   

9.
定理 已知0 <α<π2 ,0 <β<π2 ,若α+β<π2 ,则tanαtanβ≤tan2 α+β2 ;(1)若α+β>π2 ,则tanαtanβ≥tan2 α+β2 . (2 )当且仅当α=β时,上述两式取等号.证明 tanαtanβ-tan2 α+β2=sinαsinβcosαcosβ- 1-cos(α+β)1+cos(α+β)=cos(α- β)cos(α+β) -cos(α+β)cosαcosβ[1+cos(α+β) ]=- cos(α+β) [1-cos(α- β) ]cosαcosβ[1+cos(α+β) ].∵0 <α<π2 ,0 <β<π2 .∴cosα>0 ,cosβ>0 ,1+cos(α+β) >0 ,1-cos(α- β)≥0 ,从而可知,当α+β<π2 时,tanαtanβ-tan2 α+β2 ≤0 ,即(1)成立;当α+β>π2 时,tan…  相似文献   

10.
已知α、β∈(0,2π),a=(2,sinα),b=(3,sinβ),c=(3,2),d=(cosα,cosβ),a∥b,c·d=3,求2α β的值.这道试题见诸于很多省、市高考模拟卷中,在网上流行盛广.1.基本解法本题主要考查平面向量的运算法则、三角函数公式及恒等变形能力,考查运用向量及三角函数知识综合解题的能力.  相似文献   

11.
如果xR,那么|sinx|≤1,|cosx|≤1,这是三角函数中一个应用广泛的重要性质,恰当运用可以使解题过程简捷流畅;反之,忽视正、余弦函数的有界性这一隐含条件,则使同学们在解题过程中经常出现错误.下面结合实例介绍它的解题功能.一、求角度例1已知6sin3β-cos22α=6,求α,β.解原方程变形为6(sin3β-1)=cos22α,则有6×(sin3β-1)≥0,即sin3β≥1.∵|sin3β|≤1,∴sin3β=1,3β=2kπ+π2,即β=23kπ+π6(kZ).此时cos2α=0,2α=kπ+π2,即α=12kπ+π4(kZ).评注等式中含有两个未知数,如果不从正弦函数的有界性中挖掘出隐含条件寻找…  相似文献   

12.
参考公式三角函数的积化和差公式sinαcosβ=(1/2)[sin(α+β)+sin(α-β)],cosαsinβ=(1/2)[sin(α+β)-sin(α-β)], cosαcosβ=(1/2)[cos(α+β)+cos(α-β)],sinαsinβ=(1/2)[cos(α+β)-cos(α-β)]. 正棱台、圆台的侧面积公式:  相似文献   

13.
向量及其运算是高中教材的新增内容 ,它融数、形于一体 ,具有代数形式和几何形式的“双重身份” ,使它成为中学数学知识的一个交汇点 ,成为联系多项内容的媒介 .下面举例说明向量与三角函数、解析几何、立体几何的交汇 .一、向量与三角函数的交汇例 1 已知 ,a=cos32 x ,sin32 x ,b=cos x2 ,-sin x2 且x∈ 0 ,π2 .( 1)求a·b及 |a +b| ;( 2 )求函数 f(x) =a·b -4 |a +b|的最小值 .解  ( 1)按向量运算的意义 ,有a·b=cos32 xcosx2 +sin 32 x · -sin x2=cos 32 x +x2=cos 2x .a+b =cos32 x+cos x2 ,sin32 x-sin x2 ,|a +b| =cos32 …  相似文献   

14.
有这样一道习题:已知sin2a+sinβ+cos(α-β)=2,求sina+sinβ的取值范围. 错解:令u=sinα+sinβ,则u2=sin2α+sin2β+2sinαsinβ又sin2α+sin2β+cos(α-β)=2,所以U2-2=2sinαsinβ-cos(α-β)=-cos(α+β).u2=2-cos(α+β),从而1≤u2≤3,解得-3~(1/2)≤u≤一1或1≤u≤3~(1/2). 这个答案看起来似乎简洁明了,分析透彻,但细细分析便会产生这样的疑问,即cos(α+β)能取[一1,1]上的所有值吗?  相似文献   

15.
一、“给值求值”时将“待求角”用“条件角”表示例1 已知cos(α-β)=-4/5,cos(α+β)=4/5,且α-β∈(π/2,π),α+β∈(3π/1,2π),求cos2α. 解:由已知求得sin(α-β)=3/5,sin(α+β)=-3/5.又2α=(α-β)+(α+β),所以cos2α=cos(α-β)cos(α+β)-sin(α-β)sin(α+β)·代入已知数据得cos2α=-7/25. 练一练已知sin(π/4-α)=5/13(0<α<π/4),求cos2α/(?)的值.  相似文献   

16.
反证法在代数、几何证题中的地位与作用,已广为人知。但作为数学的一个分支——三角,由于它有公式繁多、恒等变形十分灵活等特点,因此在三角证题中,学生往往只知道套用公式寻求直接证法,而易于忽视反证法在三角证题中的应用。一、证明等式或证明不等式问题。例1 设α、β为锐角,且sin~2α+sin~2β=sin(α+β),求证:α+β=π/2(1983年全俄中学生数学奥林匹克试题)。证明要证α+β=π/2,只须证α+β>π/2要α+β<π/2都不能成立。为此,将已知等式变形成: sinα(sinα-cosβ)=sinβ(cosα-sinβ) (*) 假若α+β>π/2,则α>π/2-β,于是sinα>cosβ,cosα相似文献   

17.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

18.
|sinx|≤1、|cosx|≤1(x∈R),是三角函数中广泛应用的重要性质,恰当运用可使解题过程简捷流畅;反之,忽视正、余弦函数的有界性,是解题过程中出现错误的常见原因.下面结合实例介绍它的解题功能.一、求角【例1】已知6sin3β-cos22α=6,求α、β.解:原方程变形为6(sin3β-1)=cos22α,则有6(sin3β-1)≥0,即sin3β≥1因为|sin3β|≤1,所以sin3β=1,3β=2kπ 2π,即β=23kπ 6π(k∈Z),此时,cos2α=0,2α=kπ 2π,即α=12kπ 4π(k∈Z).评注:等式中含有两个未知数,需从正弦函数的有界性中挖掘隐含条件,寻找突破口.二、求最值【例2】求函…  相似文献   

19.
几乎所有的数学复习资料和习题集中,都有这样一类习题:“对于任意实数a,…”,“若…对于任意实代入上式得f(-x)=f(x). 故f(x)为奇函数. 例7.设a、b、A、B∈R,且 f(θ)=1-asinθ-bcosβ-Asin2θ-Bcos2θ, 若对于所有的实数θ恒有f(θ)≥0,求证: A~3+B~2≤1,a~2+b~2≤2. 证明,引入辅助角α、β,使得a/r=cosα,b/r=sina,A/R=cosβ,B/R=sinτ,其中r=(a~2+b~2)~(1/2),R=(A~2+B~2)~(1/2).则由f(θ)≥0得1-rsin(θ+α)-Rsin(2θ+β)≥0.(1) 由于(1)式对任何实数θ都成立,则对于π+θ也成立.即1-rsin(π+θ+α)-Rsin(2x+2θ+β)≥0. 即1+rsin(θ+α)-Rsin(2θ+β)≥0.(2) (1)+(2)得2-2Rsin(2θ+β)≥0.(3) 由于(3)式对任何实数日亦成立,则对于2θ+β=π/2也成立,即2—2R≥0. ∴ R≤1,即(A~2+B~2)≤1,故A~+B~2≤1. 用同样的方法可证a~2+b~2≤2(略). 四、求导法如果关于任意变量的解析式恒等于一个常数,就可以对这个恒等式两边求导,然后利用零解析式的特性求其他的条件变量. 例8.sin~2θ+sin~2(θ+α)+sin~2(θ+β)=3/2对任意的实数θ都成立,求α、β的值(0≤α<β≤π). 解:题设等式两边对口求导得 sin2θ+sin[2(θ+α)]+sin[2(θ+β)]≡0, 即(1+cos2α+cos2β)sin2θ+(sin2α+sin2β)cos2θ≡0, 由此得解得α=π/3,β=(2π)/3。  相似文献   

20.
一、借用方程解三角函数求角题把角视为“元”,关键是建立以角为元的三角方程,然后解此方程.例1已知α缀(0,仔),β缀(0,仔),cosα+cosβ-cos(α+β)=32,求α,β.解析(解法一)本题难点在于用一个等式如何求出两个未知量.用方程的观点去分析,通过配方,利用平方数性质,可得一个方程组.由cosα+cosβ-cos(α+β)=32,得2cosα+β2cosα-β2-2cos2α+β2+1=32,即4cos2α+β2-4cosα+β2cosα-β2+1=0,配方得(2cosα+β2-cosα-β2)2+sin2α-β2=0,∴sinα-β2=0,①2cosα+β2-cosα-β2=0.②由①式结合α缀(0,仔),β缀(0,仔),得α=β.代入②式得co…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号