首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1应用均值不等式(a+b/2)≥ab~(1/2)(a>0,b>0)求最值例1过点A(1,4)的直线l在两坐标轴上的截距均为正数,则使两截距之和最小的直线l的方程?解析欲使直线l的两截距之和最小,即在x轴上截距为1+ta4nα,在y轴上截距为4+tanα,因而5+tanα+ta4nα最小,于是有5+tanα+ta4nα≥9.等号成立的条件:当且仅当tanα=tan4α,即tan2α=4,∴tanα=±2(舍去-2),∴k=tanβ=-tanα=-2,∴y=-2x+b.又直线l过(1,4)点,∴b=6.故所求直线l方程为2x+y-6=0.评注利用均值不等式一定要注意等号成立的条件及适用的范围.2利用数形结合求最值图1例2一束光线从A(1,-1)出发经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路程是多少?解析圆C的圆心坐标为(2,3)半径r=1,点A(-1,1)关于x轴的对成点A′的坐标为(-1,1),因A′在反射线上,所以最短的距离为│A′C│-r-│A′B│,直线A′C的方程为4x-3y+1=0,即B-14,0,如图1.│A′B│=-1+412+12=45,│A′C│=(2+1)2+(3+1)2=5...  相似文献   

2.
2019年高考全国卷Ⅲ第23题(1):设x,y,z∈R,且x+y+z=1,求(x-1)^2+(y+1)^2+(z+1)^2的最小值.若以不等式方式呈现就是:设x,y,z∈R,且x+y+z=1,求证:(x-1)^2+(y+1)^2+(z+1)^2≥4/3.  相似文献   

3.
一些看似简单的平面几何知识,在高中数学解题中却有着极其重要的作用.笔者在高三的教学实践中发现,学生在某些问题的解决中因为没有充分运用平面几何知识,经常导致“卡壳”或陷入繁琐的解题困境.平面几何在高中立体几何中的应用是显而易见,所以本文主要探讨平面几何在其他方面的妙用.下面通过一些具体例子说明如何运用平面几何知识进行有效解题.1在函数最值问题中的应用例1求函数y=(x-3)2+x2+(x-4)2+(x-1)2的最小值.图1解析由两点距离公式可知,该函数的几何意义是点P(x,x)到点A(3,0)的距离与点P(x,x)到点B(4,1)的距离之和.显然点P在直线l:y=x上.如图1,作A(3,0)关于直线l的对称点A′(0,3),则│PA│+│PB│=│PA′│+│PB│,平面内两点之间线段最短,连接A′B,显然该函数的最小值为│A′B│=2 5.2在平面向量中的应用例2已知向量a≠e,│e│=1,对于任意t∈R,恒有│a-t e│≥│a-e│,则().(A)a⊥e(B)a⊥(a-e)(C)e⊥(a-e)(D)(a+e)⊥(a-e)图2解析此题一般先两边平方进行等价变形.下面给出一种利用平面几何的解法.若a∥e,显然...  相似文献   

4.
<正>1 题目呈现设x,y,z∈R,且x+y+z=1.求(x-1)~2+(y+1)~2+(z+1)~2的最小值.(2019年全国卷Ⅲ选考题)2 解法展现2.1 切入点1 运用均值不等式解法1 [(x-1)+(y+1)+(z+1)]~2=(x-1)2+(y+1)2+(z+1)~2+2(x-1)(y+1)+2(y+1)(z+1)+2(z+1)(x-1)≤3[(x-1)~2+(y+1)~2+(z+1)~2].  相似文献   

5.
1.光的反射例 1 自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在的直线方程. (89高考) 解圆方程的标准形式是(x-2)2+(y-2)2=1. 设光线l所在的直线方程是 y-3=k(x+3) (斜率k待定)由题意知k≠0,于是l的反射点的坐标是(-3/k-3,0).  相似文献   

6.
在线性规则中,常见的目标函数是直线型的,对非直线型的目标函数,本文给出几种类型及其解法·一、斜率型【例一】设x、y满足y≥0x+2y+1≤0x+y+2≥0①求目标函数z=yx--12的最大最小值,②求目标函数z=xx-+yy的最大最小值·解:①目标函数z=xy--21表示可行域内的点(x,y)与点(1,2)连线的斜率,则zmax=21-+10=1,zmin=21-+31=14·如图一,②设x-y=a,x+y=b,则x=a2+b,y=b-2a·因此,可行域y≥0x+2y+1≤0x+y+2≥0可化为b-a≥03b-a+2≤0b+2≥0,目标函数可化为z=ab,建立aob坐标系,则z=ab表示可行域b-a≥03b-a+2≤0b+2≥0内的点到原点连线的斜率·如图二,所以…  相似文献   

7.
线性规划是研究线性目标函数在线性约束条件下取最大值或最小值的问题 ,简单线性规划则是新课程标准下高中教材的必学内容 ,主要介绍两个变量的线性规划问题 ,其最优解可通过图解法求出 .这里先通过一个例子来了解简单线性规划图解法的基本思想方法 ,从而发现理论方法与实际操作的偏差 ,进而给简单线性规划图解法添加几点补注供大家参考 .例 1 求 z =5 x + 6y的最大值 ;其中 x,y满足约束条件x + y≤ 484x + 5 y≤ 2 0 03 x + 10 y≤ 3 0 0x≥ 0 ,y≥ 0解 :作出可行域如图 1,作直线 l:5 x + 6y= 0 ,把直线 l进行平移可知 ,当直线 l过点 A时…  相似文献   

8.
一、选择题(每小题5分,共60分)1.已知点A(2,3)、B(1,5),直线AB的倾斜角为()A.arctan2B.arctan(-2)C.2π+arctan2D.arctan21+2π2.直线Ax+By+C=0,其中A、B、C符号相同,则直线必过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限3.直线ax+(1-a)y=3和(a-1)x+(2a+3)y=2互相垂直,则a的值为()A.-3B.0或-23C.1D.1或-34.直线2x+3y-6=0关于点(1,-1)对称的直线是()A.3x-2y+2=0B.2x+3y+7=0C.3x-2y-12=0D.2x+3y+8=05.点(x,y)在直线x+2y+1=0上移动,函数z=2x+4y的最小值是()A.22B.2C.22D.426.直线x+y-1=0到xsin…  相似文献   

9.
张荣 《考试》2010,(Z1)
例1直线与两坐标正半轴围成面积过点P(2,1)作直线l分别交x轴,y轴正半轴于A、B两点,求当△OAB面积最小值时直线l的方程:分析:设方程x/a+y/b=1,p代入2/a+1/b=1①(这里a、b为横纵截距)  相似文献   

10.
一、利用距离公式例1已知x+y+1=0,则u=(x-1)2+(y-12姨)的最小值为.解如图1所示,如果将u=(x-1)2+(y-1)2看姨成是P(x,y)与B(1,1)两点间的距离,由于点P(x,y)的坐标满足x+y+1=0,所以u的最小值也就是点B(1,1)到直线x+y+1=0的距离,所以um=1+1+13姨2in=.姨22二、利用直线斜率公式例2实数x,y满足(x-2)2+y2=3,求y的最大值.x解如图2所示,设点P(x,y)为圆(x-2)2+y2=3上任一点,则y为直线O P的x斜率k.易求得km=3,ax姨即y的最大值为姨3.x三、利用单位圆例3已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是A.tancosθθ2222C.…  相似文献   

11.
题 1  (邵剑波提供 ) 证明或否定设a >b >c>0 ,x21a2 +y21b2 +z21c2 =1 ,x22a2 +y22b2 +z22c2 =1 ,且 (x -x1+x22 ) 2 +( y -y1+y22 ) 2 +(z -z1+z22 ) 2 =14[(x1-x2 ) 2 +( y1-y2 ) 2 +(z1-z2 ) 2 ],则x2 +y2 +z2 ≤a2 +b2 +c2 。题 2  (吴善和提供 ) 证明或否定 : 若a、b、c分别是△ABC的三边长 ,实数m≥ 1 ,a′ =(bm+cm) 1m,b′ =(cm+am) 1m,c′=(am+bm) 1m,则以a′,b′ ,c′为三边可构成△A′B′C′ ,且△ABC与△A′B′C′的内切圆半径r与r′之间成立不等式r′≥ 2 1m·r。(注 每小题第一位解答正确者将获得奖金 5 0元 )有奖…  相似文献   

12.
一道2010年瑞士数学奥林匹克不等式的证明   总被引:1,自引:0,他引:1  
一道2010年瑞士数学奥林匹克试题如下:已知x、y、z>0,xyz=1,求证:(x+y-1)2/z+(y+z-1)2/x+(z+x-1)2/y≥x+y+z.证因为x、y、z>0,  相似文献   

13.
灵活地应用定比分点坐标公式。能使某些问题的求解简捷、明快. 一求量值例1 若a>o,b>0,且1/a+9/b=1,则a+b的最小值为——. 分析:由1/a+9/b=1易知直线l:x/a+y/b=1,过定点C(1,9),其中a,b分别为直线l在x轴与y轴正向上的截距.于是问题转化为:求过定点C(1,9)的直线的截距a,b之和的最小值.如图1.由定比分点坐标公式(C是  相似文献   

14.
<正>许多教辅资料中都有这样一个命题"直线l1:A1x+B1y+C1=0(A1和B1不同为0),直线l2:A2x+B2y+C2=0(A2和B2不同为0),l1∥l2A1B2-A2B1=0且A1C2-A2C1≠0(或B1C2-B2C1≠0)."一学生运用上述结论解答2009年高考上海文科第15题时出现了错误.题目已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的  相似文献   

15.
题目(2010高考山东卷理科) 设变量x,y满足不等式组x-y+2≥0 x-5y+10≤0, x+y-8≤0则目标函数z=3x-4y的最大值和最小值分别为( )  相似文献   

16.
<正>在一次九年级数学考试中,试卷有这样一道试题:若W=2x2-4xy+5y2+4x-2y+3,且x,y为实数,则W的最小值是__.不少同学是这样解答的:W=(x2-4xy+4y2)+(x2+4x+4)+(y2-2y+1)-2=(x-2y)2+(x+2)2+(y-1)2-2.∵(x-2y)2≥0,(x+2)2≥0,(y-1)2≥0,∴W的最小值是-2.这是一道二元函数最值问题,是典型的代数推理题.解答时,  相似文献   

17.
题目 已知x、y、z>0,xyz=1.求证:(x+y-1)2/z+(y+z-1)2/x+(z+x-1)2/y≥x+y+z. 在文[1]中,作者给出的证法虽好,但不利于推广.本文中笔者给出此不等式的四种证法及推广.  相似文献   

18.
误区一:最大整数解就是目标函数取最大整数值.【例1】 已知x,y满足不等式组2x-y-3>02x+3y-6<03x-5y-15<0 求x+y的最大整数解.错解:依约束条件画出可行域如下图所示由3x-5y-15=02x+3y-6=0解得x=7519y=-1219∴x+y=7519-1219=6319,∴x+y的最大整数解为3.点击:错误主要原因是把目标函数的最大整数值与最大整数解混为一谈,最大整数解是使目标函数取得最大值时的整数解,显然,此时的最大值一定是整数值.正解:于错解的前部分过程相同,∴x+y=6319=3619.∴令x+y=3则y=3-x代入可行域解得3相似文献   

19.
线性规划问题是指在线性约束条件(即关于变量x,y的二元一次不等式或不等式组)下,求线性目标函数z=ax+by的最大值或最小值问题.在线性规划问题中,满足线性约束条件的解(x,y)叫做可行解,可行解的集合叫做可行域(可行域的边界是直线、射线或线段),使目标函数取得最值的可行解叫做这个线性规划问题的最优解.求解线性规划问题,通常是通过平移初始直线ax+by=0来解决的,所以有下面的结论: (1)若线性规划问题存在最优解,则最优解一定在边界上.  相似文献   

20.
一、复数与实数性质的异同1.相同点以下结论在实数范围内及复数范围内均成立.(1)x+y=y+x,(x+y)+z=x+(y+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号