首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
原子核是一个具有正电荷(质子)分布的带电体。这种带电体常以多极状态存在。这样就出现了电四级矩的物理概念,用来反映原子核的形状及其核在电场中的作用。因此原子核的电四级矩理论有重要的意义,但长期以来由于弄不清电四级矩的实体,这个理论实际上停止不前,越来越受到各方面的种种冲击,已使它进入理论危机。现在如何摆脱这一困境已成为当代物理学界特别关注的新问题。  相似文献   

2.
1问题的提出 在原子核运动理论中,研究核磁矩与原子核结构之间关系是一个重要的理论课题,但是从总体上看研究的很不够,现在只知凡是具有自旋角动量的原子核必具磁矩(±XμN)。如奇数质子一偶数中子核,很大一部分具有正磁矩,这与质子的正磁矩(+2.79μN)有关;偶数质子一奇数中子核很大一部分具有负磁矩,  相似文献   

3.
铁电体     
持久带电的半导体把一种不导电的物体——电介质,放到带电体附近,就能够被感应带电:靠近带电体的一端带上与带电体相反的电,另一端带上与带电体相同的电。可是等把带电体拿开以后,这种带电体就马上“失去”电了。然而有这么一种半导体,它在感应带电以后,虽然把带电体拿开,仍然保持带屯。这种半导体有个古怪的名字,叫做“铁电体”。这个名字是怎么起的呢?原来,铁电体的电极化,就像铁磁物质(如铁、镍、钴和它们的合金等)的磁化一般。可以认力,铁磁物质和顺磁物质(如铝、铂  相似文献   

4.
中子     
中子是在1930年發見的基本粒子,它所以作“中子”,是因为它不帶电,在電上講是中性的。它的重量是1.00803原子量單位。中子是核的組成成分之一,除了最簡單的原子核——氫核只是由一个質子組成的以外,其余元素的核都含有中子。由於中了不带电,不被原子核的陽电荷所排斥,所以它容易接近原子核,同它发生作用。因此在原子核物理学中,常常用中子打击原子核,来研究原子核的构造、成分和它的变化。中子在原子能事业佔有很重要的地位。因为现在  相似文献   

5.
张瑞岭 《今日科苑》2005,(12):63-63
带电体和磁体有一些相似的性质,这些相似是一种巧合呢,还是它们之间存在着某种联系?科学家们基于这种想法.一次又一次地寻找电与磁的联系。  相似文献   

6.
物质到底是由一些什么组成的? 偉大的俄國科学家洛莫诺索夫,很早以前就正确地回答了这个问題。在他的早期著作“数学化学原理”中就提出:“一切物質都是由極小的微粒(即原子)組成的。”十九世紀初,英国的物理学家道尔顿發表了有名的原子学說,但是道尔顿却認为原子是组成物質的終極粒子,原子不能再分割了。二十世紀初,科学家們証明原子并不是終極粒子,而是以一个带陽电的几乎集中原子所有質量的原子核为中心,核外是带陰电的电子圍繞着原子核旋转,原子核含有帶陽电的質子和不帶电的中子。人們对于物質結構的探索并未就此終止,随着科学和技術的發展,对物質內部結構的認識更加深入了。科  相似文献   

7.
《发明与创新》2004,(10):25
日本独立行政法人理化学研究所8月24日宣布,该研究所的29人国际研究小组有了新的发现,他们发现了用传统物理学理论无法解释的比通常原子核密度大10倍的新原子核。这一新物理现象的发现,打破了物理学中“原子核密度一定不变”的定律,对从密度变化角度揭开质量起源具有重要意义。  相似文献   

8.
问题解答     
摩擦为什么能够带电? 我们用玻璃棒、火漆棒、硬橡胶棒、硫黄块或水晶等物体,和毛皮或呢绒摩擦过以後,这些摩擦和被摩擦的东西就都带上了电,可以吸引轻小物体。用摩擦的方法使物体带电,叫做“摩擦起电”。一般地讲,任何两种不同的物质相互摩擦都能起电。实际上所谓摩擦起电,更明确些说,应该叫做“接触起电”。这是因为只要两种不同的物质互相接触,就足以使它们带电,“摩擦”的作用不过使物体能有更好的接触而已。摩擦起电的原因是这样的: 任何物质的最小组成单位是原子。每一个原子又是由若干带有负电的电子与带有正电的原子核构成的。原子核的质量大  相似文献   

9.
计算电场中电势分布时电势零点的选取是个难点,在场源带电体无限大的特殊情况下电势零点的选取不再具有任意性,本文以一些无限大带电体(系)产生的具有面对称或轴对称的电场中电势计算为例,讨论了电势零点能否选在无限远、轴线上、带电体上等特殊位置的问题。  相似文献   

10.
张玉春 《科教文汇》2010,(24):78-79
原子核衰变是一种复杂的变化,而对原子核衰变的研究又是了解原子核的重要手段。为了进一步研究原子核的衰变特性,进一步了解原子核,我们对原子核的三种主要衰变——α衰变、β衰变、γ衰变加以比较,以帮助研究者加深对原子核衰变特性的理解,进而推动粒子物理研究的发展。  相似文献   

11.
《中国青年科技》2004,(1):24-25
原子是由电子和原子核组成的。原子核带正电,它们可以在磁场中旋转。磁场的强度和方向决定原子核旋转的频率和方向。在磁场中旋转的原子核有一  相似文献   

12.
原子核的秘密的揭露,使人类掌握了新的無穷尽的能源。第一座原子能电站在苏联的建立,为將这个能源实际利用于工業和农業的和平目的,奠定了基础。原子技术的發展,开辟了把放射性同位素应用到各种全然不同的科学技术部門中去的广闊的可能性。人工取得放射性同位素的方法之一,是在原子核反应堆中用中子来照射。比如,用中子照射普通的天然的磷的时候,部分的磷原子核就和中子結合而变成磷的放射性同位素(磷-32)的原子核。当放射性磷的核衰变的时候,核中的一个中子轉化成質子,同时放射出一个β粒子(帶陰电的电子)。衰变是按照这个方式發生  相似文献   

13.
有马朗人日本科学技术振兴财团会长,同际著名的理论物理学家和社会活动家,曾提出相互作用玻色子模型理论,其中相互作用玻色了模型理论至今仍是原子核结构理论的重要基础。于1984年和1995年两度获诺贝尔奖提名.  相似文献   

14.
利用量子力学半经验方法计算了一些分子的原子多极矩,结果表明,添加原子偶极矩及原子四极短不但能产生较快的收敛速度,而且更加合理地描述了分子中的电荷分布,计算得到的原子电行值与从头计算的结果有很好的一致性,由原子多极矩计算得到的分子偶极短与实验值非常接近,该方法可以倾利地推广到大分子原子多极矩的计算。  相似文献   

15.
静电场描绘实验是传统的电磁学实验,因为静电场中没有运动的电荷,不能使电表的指针偏转,如果将带电体放在导电的介质里,维持带电体间电位差不变,介质里便会有恒定不变的电流,这样,就可用电压表测量介质中各点的电位值,再根据电位变化的最大方向算出电场强度.用理论与实践证明,导电介质里由恒定电流建立的电场(称为恒定电流场)与静电场的规律完全相似.因此,在恒定电流场中测量到的电位分布可应用到静电场中去,这种比拟方法叫模拟法.  相似文献   

16.
《科技风》2020,(21)
冷聚变自从被发现,就一直饱受争议。其争议的来源是核反应的产物与常规核理论不相匹配,另外是实验可重复性差。目前热聚变反应需要在特定的条件下,质量非常小的原子,一般指的是氘,其在高温和超高温下使得原子核的核外电子摆脱原子核核力的约束,从而造成两个或两个以上的原子核发生剧烈碰撞,碰撞所产生的聚合反应生成了新的,质量更大的原子核,而其中的中子在此期间从中逃逸出原子核,产生巨大的能量。就目前而言,实现热核的可控聚变难度十分巨大。相对于热核聚变,冷核聚变却是理想的未来新能源,冷核聚变相对于热核聚变制备设备来说,仅仅占地大约两平方米,并且在反应过程中无中子产生,无辐射。其原材料从海水中获取,原材料储量巨大。因此,冷核聚变有望成为人类最理想的能源之一。  相似文献   

17.
大約在25年前,物理学中發生了一系列具有重大意义的事件,第一次用人工方法实現了原子核的分裂。大約在同时,出現了第一个用半導体做成的交流电的整流器。这兩件大事对科学和技術的進一步發展起了决定性的影响。已經公認:發展原子核学說的使命在於改造將來的动力工程和开辟新的掌握自然的道路。虽然半導体还沒有像原子核那样廣泛地为人們所知道,但是,無疑地,它对於今后几十年的技術具有重大的意义。半導体的应用,已經在無綫电技術和电子学中,在直流电工程中,在自动裝置和訊号設备中,在照明技術中,佔据了重要的地位。然而这僅僅是  相似文献   

18.
最空的和最重的原子是由原子核和在核的周围环绕着的电子构成的:各种元素的原子核含有一定数量的微粒。在所有各种原子中,最简单的是氢原子。在氢原子中只有一个电子,同时原子核里面只有一个微粒。这个微粒便是质子。在氢原子的中心是原子核,围绕着原子核旋转的是电子。一个氢原子的直径大约是0.000,000,01厘米。这就是说:一亿个氢原子排  相似文献   

19.
小辞典     
高能粒子加速器这是加速各种粒子(如质子、电子等)达到很高能量,以供原子核物理学等科学技术部门研究之用的巨型仪器,类型有好些种,用途各有不同。粒子能量以电子伏为单位,一电子伏就是一个电子被电场所加速通过1伏特电位差而具有的能量。  相似文献   

20.
在中学课本上的原子结构图中,原子核往往被画成圆形。而实际上,大多数原子核的形状是橄榄球形的。最近,科学家利用同位素质量分离器仪器,研究了两种同位素原子氡220和镭224的原子核,有了更新的发现。镭224原子核是梨形的,一端较窄,而另一端较宽,像个没有把头的梨。而氡220的形状并不固定。此前有物理学家就从对质子和中子的各种组合进行的研究,推测某些原子核可能是非对称形状的梨形,现在终于在设备上观察到了这一罕  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号