首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
在各类考试中经常出现条件为a+b+c=0的问题.本文分类举例,说明如何灵活应用条件a+b+c=0,使问题得到解决.一、若a+b+c=0,则有a+b=-c;b+c=-a;c+a=-b例1(1998年全国初中生数学竞赛题)已知:abc≠0,并且a+bc=b+ca=c+ab=p,那么直线y=px+p一定过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限解(1)若a+b+c=0,则a+b=-c.∴p=a+bc=-1,此时直线方程为y=-x-1,经过二、三象限.(2)若a+b+c≠0,由等比性质可得:(a+b)+(b+c)+(c+a)c+a+b=p,∴p=2.此时直线方程为y=2x+2,经过一、二、三象限.故y=px+q一定经过二、三象限.故选(B).例2(2002年…  相似文献   

2.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

3.
性质1 若a+b+c=0,则方程ax2+bx+c=0有一个根是1. 证明:∵a+b+c=0,∴c=-(a+b).∴ax2+bx-(a+b)=0.∴(x-1)(ax+a+b)=0.∴x=1或x=-1-b/a.  相似文献   

4.
当a+b+c=0时     
我们知道,一元二次方程ax~2+bx+c=0(a≠0)的实数根,在b~2-4ac≥0时,可由求根公式求得。 现在,我们来探究一个问题,当a+b+c=0时,一元二次方程ax~2+bx+c=0(a≠0)的根有什么特点? 探究 ∵ a+b+c=0,∴b=-(a+c),∴ 原方程可化为ax~2-(a+c)x+c=0,即 (ax~2-ax)-(cx-c)=0. ∴ ax(x-1)-c(x-1)=0. ∴(x-1)(ax-c)=0. ∴ X_1=1,X_2=c/a。  相似文献   

5.
<正> (a+b)n二项展开式有n+1项,(a+b+c)n三项展开式的项数可以按二项展开式办法求出.[(a+b)+c]n=C_n~0(a+b)nc0+C_n~1(a+b)n-1c1+…+C_n~r(a+b)n-rcr+…+C_n~n(a+b)0cn,其展开式的项数为(n+1)+n+(n-1)+…+2+1=(n+1)(n+2)/2,(*)  相似文献   

6.
我们在文 [1 ]的案例 3中 ,谈了数形结合的双向沟通 ,顺便对题目 (文 [1 ]例 3、4、5 ,此处统一为例 1 )例 1 已知a >0 ,b >0 ,c >0 ,求证 :( 1 )a2 +b2 +ab +b2 +c2 +bc>a2 +c2 +ac;( 2 )a2 +b2 -ab +b2 +c2 -bc ;≥a2 +c2 +ac,( 3 )a2 +b2 -ab +b2 +c2 -bc>a2 +c2 -ac.从特殊到一般作出了推广 :a2 +b2 +k1ab +b2 +c2 +k2 bc≥a2 +c2 +k3ac .①其中 |ki|<2 ,i=1 ,2 ,3 .这对b +k1a≥ 0且b +k2 c≥0 (特别地k1≥ 0 ,k2 ≥ 0 )时 ,结论是显然的 ,有左边≥a +c=a2 +c2 +2ac >右边 .但当k1、k2 中出现负数呢 ?文 [2 ]指出 ,推广式①并非永远…  相似文献   

7.
夕,几口尸月J‘J、切~‘r闷目,曰一口目J子、-‘~户Jj 代数学习中,含条件a+b+。一0的问题屡见不鲜.解此类题时,可考虑以下三种转化. 1.移项 例1已知a十b+。=o,a‘十b‘+c峨一1,那么a(b+。)“+b(。+a)“+。(a+b)“=(D)解不能确定是正数、负数或零. (02年十三届希望杯初二竞赛)易得,(a+b+。)2=o,即解由 (96年聪明杯初一竞赛)a+b+‘一O,得 b+e=一a,c+a=一b,a+b故原式=a(一a)3+b(一b)3+。(一一—C。c)“ 矿十少十了+2(ab十阮+ca)一。, 1 ab+加+ca-一音(丫+梦+c“). 一.一,一2、一因为ab。<0,所以 a共O,b笋O,c界0,aZ+bZ+cZ>0.即ab十阮十ca<0…  相似文献   

8.
定理1.整系数一元二次方程ax~2+bx+c=0(a≠0)存在整数解x=0的条件是c=0;存在整数解x=1的条件是a+b+c=0;存在整数解x=-1的条件是a-b+c=0。证明:x=0是ax~2+bx+c=0的解  相似文献   

9.
错在哪里     
王庆 《中学数学教学》2020,(1):F0003-F0003
题目已知实数a,b,c满足a+b+c=1,a 2+b 2+c 2=3,则c的取值范围是.解答∵a+b+c=1,∴a+b=1-c,又∵a 2+b 2+c 2=3,∴a 2+b 2=3-c 2.根据均值不等式a+b 2≤a 2+b 22得1-c 2≤3-c 22,且该均值不等式成立的条件:a、b∈R,等号成立条件:a=0,b≥0或a≥0,b=0或a=b>0.解不等式1-c 2≤3-c 22得:1-c≤0,3-c 2≥0,或1-c>0,3-c 2≥0,()2≤3-c 22,∴1≤c≤3或-1≤c<1,综上可得:-1≤c≤3.  相似文献   

10.
一、y=ax~2+bx+c中a、b、c的几何意义 1.抛物线开口向上,则(a>0,抛物线开口向下,则a<0;2.抛物线与y轴交于x轴上方,则c>O,与y轴交于x轴下方,则c<0.3。抛物线的对称轴位于y轴左侧,则a、b同号,对称轴位于y轴右侧,则a、b异号。例1 二次函数y=ax~2+bx+c图象如图所示,试决定a、b、c符号。解∵抛物线开口向上,∴a>0,抛物线与y轴交于x轴上方,∴c>0,又对称轴位于y轴左侧,故a、b同号,由于a>0,∴b>0,∴a>0,b>0,c>0。  相似文献   

11.
《中学数学教学》2 0 0 2年第 6期有奖解题擂台( 5 8)中 ,杨先义老师提出如下猜想 :设a >0 ,b >0 ,c>0 ,a +b +c=1 ,则1b+c2 +1c +a2 +1a +b2 ≥2 74①ab +c2 +bc +a2 +ca +b2 ≥ 94②本文指出 ,猜想不等式①不成立 ,不等式②成立。在①式中 ,令a =0 6,b=0 3 6,c =0 0 4,得左边 =3 41 9455 1 5 2 8<2 74=右边 ;故不等式①不成立。下面证明不等式②成立 ,并修正①式。运用Cauchy不等式 ,得[a(b +c2 ) +b(c +a2 ) +c(a +b2 ) ]( ab+c2 +bc+a2 +ca +b2 )≥ (a +b +c) 2 =1 ,所以  ab +c2 +bc+a2 +ca +b2 ≥1ab +bc +ca +a2 b +b2 c+c2 a。…  相似文献   

12.
<正> 性质在一元二次方程ax2+bx+c=0(a≠0)中,若a+b+c=0,则该方程必有一根为1. 证明∵a+b+C=0,且a≠0,∴a=-(b+C). ∴ax2+bx+c=-(b+c)x2+bx+C =-bx2-cx2+bx+c  相似文献   

13.
(a+b)n二项展开式有(n+1)项,(a+b+c)n三项展开式的项数可以按二项展开式办法求出:[(a+b)+c]n=C0n(a+b)nc0+C1n(a+b)n-1c1+…+Crn(a+b)n-rcr+…+Cnn(a+b)0cn,其展开式共有(n+1)+n+(n-1)+…+2+1=(n+1)(n+2)/2项.那么(a1+a2+a3+…+am)n展开式又有多少项呢?  相似文献   

14.
我们由二项式定理(a+b)n=C0nan+c1nan-1b+…+Crnan-rbr+…+Cnnbn,可以知道(a+b)n展开式中有n+1项.那么,(a+b+c)n展开式中有多少个不同的项呢? 先从简单的情况入手,记(a+b+c)n的展开式的项数为un.显然,n=1时,u1=3=(2·3)/2;n=2时,u2=6=(3·4)/2;  相似文献   

15.
同学们在解答比较分式值大小的相关问题时,通常需要对分式进行变形整理,下面给出几种方便快捷的变形策略,供同学们学习参考.一、通分变形例1已知a,b,c,d都是正数,且ab0B.A≥0C.A<0D.A≤0解:A=b(c+d)-d(a+b)(a+b)(c+d)=bc-ad(a+b)(c+d).因为a,b,c,d都是正数,且ab0,a+b>0,ad0,应选A.二、添项变形例2设a>0>b>c,a+b+c=1,M=b+ca,N=a+cb,P=a+bc,则M、N、P之间的大小关系是A.M>N>PB.N>P>MC.P>M>ND.M>P>N解:因为a+b+c=1,所以M=b+ca+1-1=1a-1,N=a+cb+1-1=1b-1,P=a+b+1-1=1…  相似文献   

16.
<正>对于函数y=(cx+d)/(ax+b)(其中a≠0,c,d不同时为0),当ad=bc时,y=c/a为常函数;当ad≠bc时,函数y=(cx+d)/(ax+b)为分式函数,这个分式函数有着十分简洁而优美的优质.下面笔者尝试着探讨型如y=(cx+d)/(ax+b)(其中a≠0,c,d不同时为0且ad≠bc)的图象和性质的,并透过例题,给出这些性质的一些应用.  相似文献   

17.
一、关系 二次函数y=ax~2+by+c(a≠0)的图象是由系数a,b,c决定的,系数符号与抛物线有如下关系: 1.二次项系数a决定抛物线的开口方向。 a>0开口向上; a<0开口向下。 2.抛物线的对称轴是直线x=-b/2a。 b=0抛物线的对称轴是y轴; ab>0(a,b同号)抛物线的对称轴在y轴的  相似文献   

18.
命题 若实数 a,b,c满足 a b c=0 ,则  ( ) a3 b3 c3=3abc;( )关于 x的方程 ax2 bx c=0必有一根为 1;( ) b2 ≥ 4ac.证明  ( )由乘法公式 (a b c) (a2 b2 c2 - ab- bc- ca) =a3 b3 c3- 3abc知 ,当 a b c=0时 ,a3 b3 c3=3abc.( )当 x=1时 ,ax2 bx c=a b c= 0 ,故 x=1是方程 ax2 bx c=0的根 .( )当 a≠ 0时 ,ax2 bx c=0是一元二次方程 ,由 ( )知它有实数根 ,故△≥ 0 ,即b2 - 4ac≥ 0 ,b2 ≥ 4ac.当 a=0时 ,b2≥ 4ac显然成立 .这是一个重要的命题 ,它的应用极为广泛 ,利用它来解决条件中出现 (或可化成 ) a b …  相似文献   

19.
已知方程 asinx+bcosx=c。①其中a、b、c都是给定的实数,且a、b不同时为零,x∈[x_0,x_0+2π),x_0是任一固定常数。设△=a~2+b~2-c~2,则当△>0时,方程①有两个不相等的实数根; 当△=0时,方程①有两个相等的实数根; 当△<0时,方程①没有实数根; 证明∵a、b不同时为零, ∴(a~2+b~2)~(1/2)≠0。∴sin(x+φ)=C/((a~2+b~2)~(1/2))。②(其中φ是辅助角,a≠0时,tgφ=b/a;b≠0  相似文献   

20.
在一元二次方程ax2+bx+c=0(a≠0、a、b、c为常数)中,当x=1时,a十b+c=0;反过来,当a+b+c=0时,就有x=1是方程ax2+bx+c=0的一个根. 由此类推到:如果am2+bm+c=0,an2+bn+c=0,且m≠n那么就知道m、n是一元  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号