首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The purpose of this study is to examine the effect of state-mandated policy, emphasizing control through performance-based instruction and student test scores as the basis for determining school accreditation, on the teaching and learning of science. The intended consequence of instigating the rational theory of management by one state is to improve their current level of student literacy. However, some contend that the implementation of the policy has results that are not intended. The identification of the tension between the intended and unintended results of centralized policy making is the basis for examining a specific case in which the rational model is implemented. One hundred and sixty-five seventh-grade science students and four teachers are participants in the study. Qualitative analysis is the research methodology used as a means to provide detailed information about the contextual nature of the classroom processes. The intention is to identify and describe features of the behavior setting that influence the behavior of the teachers and their students. Three assertions generated during the field work were: Teachers redefine the goals of science instruction as the acquisition of facts and isolated skills, teachers alter their usual instructional behavior to implement uniform instructional procedures, and the teacher/student classroom interaction constrains students' opportunities to learn science. The implications of the study indicate that the state-mandated policy has results that are in opposition to the intended results. Instead of improving the practices of teachers, the implementation of the policy constrains and routinizes the teachers' behavior, causing them to violate their own standards of good teaching. They feel pressured to “get through” the materials so students will score well on tests. The classroom interaction is structured in such a way as to inhibit students from asking questions of their own. As a result, students' opportunity to express curiosity and inquiry—central processes in scientific thinking—are constrained. These unintended consequences of the implemented state policy, instead of improving science teaching and learning, continue to reduce science instruction to the literal comprehension of isolated facts and skills.  相似文献   

2.
Teaching science as explanation is fundamental to reform efforts but is challenging for teachers—especially new elementary teachers, for whom the complexities of teaching are compounded by high demands and little classroom experience. Despite these challenges, few studies have characterized the knowledge, beliefs, and instructional practices that support or hinder teachers from engaging their students in building explanations. To address this gap, this study describes the understandings, purposes, goals, practices, and struggles of one third-year elementary teacher with regard to fostering students' explanation construction. Analyses showed that the teacher had multiple understandings of scientific explanations, believed that fostering students' explanations was important for both teachers and students, and enacted instructional practices that provided opportunities for students to develop explanations. However, she did not consistently take up explanation as a goal in her practice, in part because she did not see explanation construction as a strategy for facilitating the development of students' content knowledge or as an educational goal in its own right. These findings inform the field's understanding of teacher knowledge and practice with regard to one crucial scientific practice and have implications for research on teachers and inquiry-oriented science teaching, science teacher education, and curriculum materials development.  相似文献   

3.
For students to meaningfully engage in science practices, substantive changes need to occur to deeply entrenched instructional approaches, particularly those related to classroom discourse. Because teachers are critical in establishing how students are permitted to interact in the classroom, it is imperative to examine their role in fostering learning environments in which students carry out science practices. This study explores how teachers describe, or frame, expectations for classroom discussions pertaining to the science practice of argumentation. Specifically, we use the theoretical lens of a participation framework to examine how teachers emphasize particular actions and goals for their students' argumentation. Multiple-case study methodology was used to explore the relationship between two middle school teachers' framing for argumentation, and their students' engagement in an argumentation discussion. Findings revealed that, through talk moves and physical actions, both teachers emphasized the importance of students driving the argumentation and interacting with peers, resulting in students engaging in various types of dialogic interactions. However, variation in the two teachers' language highlighted different purposes for students to do so. One teacher explained that through these interactions, students could learn from peers, which could result in each individual student revising their original argument. The other teacher articulated that by working with peers and sharing ideas, classroom members would develop a communal understanding. These distinct goals aligned with different patterns in students' argumentation discussion, particularly in relation to students building on each other's ideas, which occurred more frequently in the classroom focused on communal understanding. The findings suggest the need to continue supporting teachers in developing and using rich instructional strategies to help students with dialogic interactions related to argumentation. This work also sheds light on the importance of how teachers frame the goals for student engagement in this science practice.  相似文献   

4.
Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers’ use of a year-long high school urban ecology curriculum and how teachers’ self-efficacy, instructional practices, curricular enactments and previous experience impacted student learning. Data sources included teacher belief surveys, teacher enactment surveys, a student multiple-choice assessment focused on defining and identifying science concepts and a student open-ended assessment focused on scientific inquiry. Results from the two hierarchical linear models indicate that there was significant variation between teachers in terms of student achievement. For the multiple-choice assessment, teachers who spent a larger percentage of time on group work and a smaller percentage of time lecturing had greater student learning. For the open-ended assessment, teachers who reported a higher frequency of students engaging in argument and sharing ideas had greater student learning while teachers who adapted the curriculum more had lower student learning. These results suggest the importance of supporting the active role of students in instruction, emphasising argumentation, and considering the types of adaptations teachers make to curriculum.  相似文献   

5.
Professional Learning Communities (PLCs) are frequently being used as a vehicle to transform science education. This study explored elementary teachers' perceptions about the impact of participating in a science PLC on their own professional development. With the use of The Science Professional Learning Communities Survey and a semi-structured interview protocol, elementary teachers' perceptions of the goals of science PLCs, the constraints and benefits of participation in PLCs, and reported differences in the impact of PLC participation on novice and experienced teachers were examined. Sixty-five elementary teachers who participated in a science PLC were surveyed about their experiences, and a subsample of 16 teachers was interviewed. Results showed that most of the teachers reported their science PLC emphasized sharing ideas with other teachers as well as working to improve students' science standardized test scores. Teachers noted that the PLCs had impacted their science assessment practices as well as their lesson planning. However, a majority of the participants reported a differential impact of PLCs depending on a teacher's level of experience. PLCs were reported as being more beneficial to new teachers than experienced teachers. The interview results demonstrated that there were often competing goals and in some cases a loss of autonomy in planning science lessons. A significant concern was the impact of problematic interpersonal relationships and communication styles on the group functioning. The role of the PLC in addressing issues related to obtaining science resources and enhancing science content knowledge for elementary science teachers is discussed.  相似文献   

6.
Current research indicates that student engagement in scientific argumentation can foster a better understanding of the concepts and the processes of science. Yet opportunities for students to participate in authentic argumentation inside the science classroom are rare. There also is little known about science teachers' understandings of argumentation, their ability to participate in this complex practice, or their views about using argumentation as part of the teaching and learning of science. In this study, the researchers used a cognitive appraisal interview to examine how 30 secondary science teachers evaluate alternative explanations, generate an argument to support a specific explanation, and investigate their views about engaging students in argumentation. The analysis of the teachers' comments and actions during the interview indicates that these teachers relied primarily on their prior content knowledge to evaluate the validity of an explanation rather than using available data. Although some of the teachers included data and reasoning in their arguments, most of the teachers crafted an argument that simply expanded on a chosen explanation but provided no real support for it. The teachers also mentioned multiple barriers to the integration of argumentation into the teaching and learning of science, primarily related to their perceptions of students' ability levels, even though all of these teachers viewed argumentation as a way to help students understand science. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 1122–1148, 2012  相似文献   

7.
ABSTRACT

Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students’ spoken or written argumentation. Consequently, teachers’ pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers’ theory and pedagogy of argumentation. Data sources included the participants’ video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants’ written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ?St??rategies for ?Argumentation, and Meta-strategic Instructional ?St??rategies for ?Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers’ instructional practices while they are implementing argumentation-based lessons.  相似文献   

8.
Employing achievement goal theory (Ames Journal of Educational psychology, 84(3), 261–271, 1992), we explored science teachers’ instruction and its relation to students’ motivation for science learning and school culture. Based on the TARGETS framework (Patrick et al. The Elementary School Journal, 102(1), 35–58, 2001) and using data from 95 teachers, we developed a self-report survey assessing science teachers’ usage of practices that emphasize mastery goals. We then used this survey and hierarchical linear modeling (HLM) analyses to study the relations between 35 science teachers’ mastery goals in each of the TARGETS dimensions, the decline in their grade-level 5–8 students’ (N = 1.356) classroom and continuing motivation for science learning, and their schools’ mastery goal structure. The findings suggest that adolescents’ declining motivation for science learning results in part from a decreasing emphasis on mastery goals by schools and science teachers. Practices that relate to the nature of tasks and to student autonomy emerged as most strongly associated with adolescents’ motivation and its decline with age.  相似文献   

9.
The Elementary Science Integration Project (ESIP) brought together teachers knowledgeable about, and committed to, whole-language instruction with their science-oriented counterparts to explore connections between the disciplines and build from teachers' strengths. By recognizing commonalities, that both hands-on science and whole language center on inquiry and focus on children's learning processes, ESIP was designed to reveal the issues both groups of teachers see as important as they go about making classroom decisions. The ultimate goal of the project was to promote science as central to cross-curricular study, thus increasing the comfort level of teachers, the amount of time devoted to science in the classroom, and an interest in inquiry. This article described the project and identified the considerations teachers used to evaluate science–language-arts connections. Twenty expert and 7 novice teachers worked together over a 2-year period to construct and elaborate their own understandings of curricular integrátion, designing action research projects to explore their newfound understandings. Teachers kept journals and participated in extensive group discussions and interviews that provided the data sources for this article. Results revealed the influence of teachers' scholarly and pedagogical orientations on the way they think about science–language-arts connections and the influence of personal experiences in convincing teachers that science–language-arts connections are worth fostering in the classroom.  相似文献   

10.
Researchers and policy-makers have recognized the importance of including and promoting socioscientific argumentation in science education worldwide. The Swedish curriculum focuses more than ever on socioscientific issues (SSI) as well. However, teaching socioscientific argumentation is not an easy task for science teachers and one of the more distinguished difficulties is the assessment of students’ performance. In this study, we investigate and compare how science and Swedish language teachers, participating in an SSI-driven project, assessed students’ written argumentation about global warming. Swedish language teachers have a long history of teaching and assessing argumentation and therefore it was of interest to identify possible gaps between the two groups of teachers’ assessment practices. The results showed that the science teachers focused on students’ content knowledge within their subjects, whereas the Swedish language teachers included students’ abilities to select and use content knowledge from reliable reference resources, the structure of the argumentation and the form of language used. Since the Swedish language teachers’ assessment correlated more with previous research about quality in socioscientific argumentation, we suggest that a closer co-operation between the two groups could be beneficial in terms of enhancing the quality of assessment. Moreover, SSI teaching and learning as well as assessment of socioscientific argumentation ought to be included in teacher training programs for both pre- and in-service science teachers.  相似文献   

11.
The purpose of the study was two-fold: to (a) investigate the influence of explicit nature of science (NOS) and explicit argumentation instruction in the context of a socioscientific issue on the argumentation skills and NOS understandings of students, and (b) explore the transfer of students' NOS understandings and argumentation skills learned in one socioscientific context into other similar contexts (familiar and unfamiliar). Participants were a total of 121 seventh grade students from two schools. The treatment involved an eight-week unit about the water usage and safety, which was taught by two teachers for two intact groups (Treatments I and II). Explicit NOS instruction was integrated for all groups. However, only the Treatment I groups had the additional explicit argumentation instruction. Participants were pre- and post-tested using an open-ended questionnaire and interviews about two socioscientific issues to assess their learning and transfer of argumentation skills and NOS understandings. Results showed improvements in the learning of argumentation practice and NOS understandings for Treatment I group participants. Similarly, there were improvements in the learning and transfer of NOS understandings for Treatment II group participants with only some improvements for the argumentation practice. Further, some of the Treatment I group participants made connections to argumentation when explicating their NOS understandings by the end of the study. Findings were discussed in light of classroom practice that utilizes an explicit approach, contextual approach, as well as an approach that integrates NOS and argumentation simultaneously.  相似文献   

12.
This study investigated the relationships between teachers' self‐reported classroom goal structures, instructional self‐perceptions, teaching efficacy, and perceptions of students' motivation in a developing East Asian nation. This study's participants were 404 teachers, across subject areas, in 14 high schools in an East Asian nation. Similar studies have been conducted in western nations, but these cannot be generalised to the East Asian cultural context without direct research. The following teacher perceptions correlated strongly with perceptions of student motivation: learning goal orientations; student ability; instrumentality of instruction; and high teaching self‐efficacy. Among these related factors, learning goals and ability emerged as the strongest predictors of perceived student motivation. Teachers interviewed reported that their students' motivation is primarily extrinsic and performance‐oriented, influenced by external factors, predominantly exam pressure and social expectations. These findings have important implications for teacher education and practice, and for school policy and educational reform.  相似文献   

13.
14.
Abstract

This study examines the verbal interactions among a group of pre-service teachers as they engaged in scientific discussions in a medicinal chemistry course. These discussions were part of the course that encompassed an explicit instruction of scientific argumentation structures as well as an applied component, whereby the pre-service teachers learned the content of medicinal chemistry through cases developed using the strategy of competing theories. By adopting a case study approach using sociocultural framework of learning, we examined the interactions between the pre-service teachers using video data. We describe 12 possible forms of interactions during discussions – (1) seeking clarification, (2) figuring out loud, (3) sharing information, (4) agreement, (5) asking questions, (6) providing explanations, (7) raising strategic and procedural issues, (8) stating claims, (9) disagreement, (10) sharing perspectives, (11) offering alternatives, and (12) persuasion. The pre-service teachers engaged in figuring out aloud and seeking clarifications frequently, and used persuasion least in their discussions. To clarify their ideas and thoughts, pre-service teachers commonly rebut their counterparts and used warrants to support their own assertions. A similar pattern was also observed when figuring their thoughts out loud. Our findings suggest that pre-service teachers were able to carry out rebuttals in the argumentation process. However, the quality and function of their rebuttals can be improved by deepening their understanding of the subject matter knowledge and the science argumentation structure. Implications are discussed.  相似文献   

15.
This article addresses the impact of race and ethnicity on students' science learning in US schools. Specifically, it discusses (a) the constructs of race, ethnicity, and culture, and the racial and ethnic student composition in US public schools; (b) effective classroom practices for curriculum, instruction, and assessment related to race and ethnicity; and (c) future policy and practice regarding race and ethnicity in science education. We discuss the science learning and teaching of African American, Latino, and Asian American students. Even though Asian American students are viewed as the model minority, some struggle with science learning, because their languages and cultures are seen as hurdles. As there is little defendable science education research related to Native Americans at the precollege level, we remain silent in this area.  相似文献   

16.
This investigation explores the effectiveness of a teacher preparation program aligned with situated learning theory on preservice science teachers' use of technology during their student teaching experiences. Participants included 26 preservice science teachers enrolled in a 2‐year Master of Teaching program. A specific program goal was to prepare teachers to use technology to support reform‐based science instruction. To this end, the program integrated technology instruction across five courses and situated this instruction within the context of learning and teaching science. A variety of data sources were used to characterize the participants' intentions and instructional practices, including classroom observations, lesson plans, interviews, and written reflections. Data analysis followed a constant comparative process with the goal of describing if, how, and why the participants integrated technology into their instruction and the extent to which they applied, adapted, and innovated upon what they learned in the science teacher preparation program. Results indicate that all participants used technology throughout their student teaching for reform‐based science instruction. Additionally, they used digital images, videos, animations, and simulations to teach process skills, support inquiry instruction, and to enhance student engagement in ways that represented application, adaptation, and innovation upon what they learned in the science teaching methods program. Participants cited several features of the science teacher preparation program that helped them to effectively integrate technology into their instruction. These included participating in science lessons in which technology was modeled in the context of specific instructional approaches, collaborating with peers, and opportunities for feedback and reflection after teaching lessons. The findings of this study suggest that situated learning theory may provide an effective structure for preparing preservice teachers to integrate technology in ways that support reform‐based instruction. © 2013 Wiley Periodicals, Inc. J Res Sci Teach 50:348–379, 2013  相似文献   

17.
In the present STEM (Science, Technology, Engineering, and Mathematics)-driven society, socioscientific issues (SSI) have become a focus globally and SSI research has grown into an important area of study in science education. Since students attending the social and science programs have a different focus in their studies and research has shown that students attending a science program are less familiar with argumentation practice, we make a comparison of the supporting reasons social science and science majors use in arguing different SSI with the goal to provide important information for pedagogical decisions about curriculum and instruction. As an analytical framework, a model termed SEE-SEP covering three aspects (of knowledge, value, and experiences) and six subject areas (of sociology/culture, economy, environment/ecology, science, ethics/morality, and policy) was adopted to analyze students’ justifications. A total of 208 upper secondary students (105 social science majors and 103 science majors) from Sweden were invited to justify and expound their arguments on four SSI including global warming, genetically modified organisms (GMO), nuclear power, and consumer consumption. The results showed that the social science majors generated more justifications than the science majors, the aspect of value was used most in students’ argumentation regardless of students’ discipline background, and justifications from the subject area of science were most often presented in nuclear power and GMO issues. We conclude by arguing that engaging teachers from different subjects to cooperate when teaching argumentation on SSI could be of great value and provide students from both social science and science programs the best possible conditions in which to develop argumentation skills.  相似文献   

18.
《Educational Assessment》2013,18(4):279-315
The purpose of this study was to examine the impact of the Maryland School Performance Assessment Program (MSPAP) and the Maryland Learning Outcomes (MLOs) on mathematics classroom instruction and assessment practices, professional development, and student learning. The data sources included questionnaires for principals, mathematics teachers, and students, as well as student performance on MSPAP over a 5-year period. Ninety elementary and middle schools in Maryland participated in the study. The results indicate that principals and teachers tended to support MSPAP as a tool for making changes in instruction, teachers were making some positive changes in mathematics instruction because of MSPAP (based on the questionnaire data), and the schools for which teachers reported that MSPAP had a greater impact on their mathematics instruction had greater MSPAP performance gains in mathematics over the 5 years.  相似文献   

19.
Undergraduate college “science partners” provided content knowledge and a supportive atmosphere for K–5 teachers in a university–school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed “participatory reform”; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers'' skills in inquiry-based science instruction. Here, we describe some of the program''s successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children''s science learning abilities to express more mature, positive views.  相似文献   

20.
This paper considers the circumstances under which science teachers can respond positively and productively to educational policy reforms in the area of science practical assessment. To understand what might be involved in linking science teachers’ assessment capacities and their professional development, we present illustrative data from recent research studies conducted in Singapore and Hong Kong showing contrasting approaches taken in the implementation of reforms in science practical assessment. In Singapore, teachers worked together to select, discuss, clarify and refine their practices as they made decisions about what to teach and assess. In Hong Kong, teachers took a critical stance towards the new policy and learnt from their own experiences in order to build their confidence. With the same policy initiative, one group of teachers focused more on the technicalities of complying with requirements imposed on them while in the other group had their professional consciousness of what they thought was best for their students provoked so that their practices would be transformed. In an attempt to draw lessons for other contexts in supporting the implementation of assessment policy reforms through professional development work, we identify and discuss a range of factors in science teachers’ professional development that arise once in situ professional development work has started. Overall, our intent in this article is to recast assessment reform as a driver or pivot in teachers’ professional development and learning. To do this it is necessary, we argue, to afford teachers’ experiences and the processes involved in learning from them greater emphasis in order to ensure the continuance of innovation in the assessment of laboratory-based work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号