首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
解析几何中关于二次曲线上存在两点关于直线对称问题,有一般的通性解法,但椭圆、双曲线、抛物线各异(椭圆封闭,双曲线、抛物线不封闭),要依具体情况,选择最优方法解题.例1是否存在实数a,使抛物线y=ax2-1上总存在关于直线y=21x对称的两点,若存在,求a的取值范围.解:假设存在实数a  相似文献   

2.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

3.
在解析几何中,我们经常遇到“圆锥曲线上是否存在关于直线对称点”的问题.此类问题解法多样,技巧灵活多变,如果能正确引导,将能开拓思维,培养能力. 例已知椭圆C的方程为x2/4+y2/3=1,试确定m的取值范围,使得对于直线l:y=4x+m,椭圆C上有不同的两点关于l对称.  相似文献   

4.
不等关系是高中数学研究的重要方面 ,也是各级各类考试必考的内容 .不等关系的引进又是令人颇感疑难的问题 .下面笔者就根据自己的多年从教经验 ,谈谈在数学解题中如何引进不等关系 ,从而顺利解题 .1 判别式法应用方程的数学思想将题目的条件转化为一元二次方程是否有解的问题去解决 ,即根据一元二次方程ax2 bx c =0有解的条件Δ≥ 0 ,从而引进不等关系 .例 1 已知抛物线y =ax2 -1上存在关于直线l:x y =0成轴对称的 2点 ,试求实数a的取值范围 .解 设抛物线上关于直线l对称的两相异点P(x1 ,y1 )、Q(x2 ,y2 ) ,线段PQ中点为M (x0 ,y0 …  相似文献   

5.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

6.
抛物线上有关存在相异两点关于某直线(或某点)对称求参数范围的问题,一般都是利用构造判别式大于0(Δ>0)或利用对称中点M(x0,y0)位于抛物线焦点所在范围内构造y20与2p x0不等式进行求解.本文给出利用均值不等式解决此类型问题的一种新方法,其特点是思路明快,解法简捷.例已知抛物线C:y2=4x与直线l:y=2x+m,若C上总存在相异两点P、Q关于直线l对称,求m的取值范围.解设P(t2,2t),Q(s2,2s)(t≠s),则kpq·kl=-1且PQ的中点M∈l,所以2s-2ts2-t2·2=-1,2t+2s2=2·t2+2s2+m.即s+t=-4,s2+t2=-m-4.所以s2+t2=-m-4,2st=20+m.因为s2+t2>2st(s≠t),所以-m…  相似文献   

7.
我们知道:P1(x1,y1)和P2(x2,y2)在直线L:Ax By C=0(A2 B2≠0)的两侧(Ax1 By1 C)(Ax2 By2 C)<0·利用这个性质可得一类直线斜率的统一解法:【例1】已知两点P(2,-3),Q(-3,-4),直线ax y 2=0与线段PQ相交,求a取值范围·解:线段PQ与直线ax y 2=0相交,P、Q在直线的两侧或P、Q在直线上  相似文献   

8.
邹宗兰  张青山 《数学教学通讯》2006,(11):F0003-F0003
2004年《数学通报》11期刊登了候守一和王宗发先生的文章《圆锥曲线上两点关于直线对称相关问题探究》,文中介绍了“假设圆锥曲线C:F(x,y)=0;l:y—kx+b(k为不为零的常数).若C上存在两点P、Q关于l对称,求b的取值范围”这一问题的3种解答方法.本文针对该问题再给出一种更为简明的解法.  相似文献   

9.
圆锥曲线中,关于直线对称问题,主要考查学生对所学知识的综合运用能力,由于此类问题中的直线(曲线)在动,曲线上关于直线的对称点也在动,且解题过程中一般要涉及两个或多个参数,学生在解答时,往往抓不住主要矛盾,对合理运用动静条件感到无从下手或解题思路混乱,因此本文就此问题归纳出几种不同解法,以供参考.已知抛物线C:y2=2x-1及定点A(2,0),试问是否存在过A点的直线l,使得能在抛物线上找到不同的两点关于直线l对称?如果存在,请求出直线l的斜率的范围;不存在,请说明理由.解法1设直线l的方程为y=k(x-2),当k=0时,显然成立.当k≠0时,设抛物线…  相似文献   

10.
二次曲线关于直线有对称点的问题是中学数学的主要题型。学生解这类题常感到困难。今归纳几种常见解法如下,供同行们参考。 方法一 利用判别式。 例1 设抛物线y=x~2-1上存在关于直线ι:y=ax对称的两点,求a的范围。 解 设A(x_1,y_1),B(x_2,y_2)是抛物线y=x~2-1上关于直线l对称的两点,AB的  相似文献   

11.
最近,我校高三数学练习卷上一个圆锥曲线问题引起了笔者的兴趣. 1问题及其解答 已知抛物线C:x^2=4y,过点A(0,4)的直线l交抛物线C于M,N两点,过点N作y轴的平行线与直线y=-4相交于点Q,若MN—NQ,求直线MN的方程.  相似文献   

12.
已知M、N是抛物线x^2-4ay=4a^2上两点,且M,N关于直线l:y=x 1对称,求(1)a的取值范围;(2)[MN]的最大值.  相似文献   

13.
遇到解析几何题,通常是从有关概念、定式(如公式、法则以及曲线标准方程等)和定法(即教材中介绍的基本方法)着手进行思考分析,寻求解题对策,虽一般能奏效,但有时会出现解题过程复杂甚至难以处理的局面.此时,若能针对问题的不同情况,采取一些非常规的解题方法去分析思考,常能将问题变繁为简,化难为易.1 曲线方程的非标准化处理例1 已知抛物线C:y2=2ax(a<0),过点(-1,0)作直线l交抛物线C于A、B两点,是否有以AB为直径且过抛物线C的焦点F的圆?分析 一般设直线l的点斜式方程y=k(x 1)(k≠0),代入方程y2=2ax,整理得k2x2 (2k2-2a)x k2=0.若存…  相似文献   

14.
一、鼓励参与,培养主体意识数学教学的本质是数学思维活动的教学,教师是全部教学活动的组织者.如我在复习曲线对称问题时,提出问题:(1)点(x,y)关于点(a,b)的对称点坐标是什么?曲线f(x,y)=0关于点(a,b)的对称曲线是什么?由学生思考、学生回答、教师讲解.(2)设抛物y=x~2-1上存在关于直线L:x+y=0对称的相异两点,求这两点坐标.师生共同分析点关于直线对称问题的一般解法及特殊直线的特殊求法,由学生解答.(3)若改y=x~2-1为y=(1/2)x~2-1,抛物线上是否还存在关于直线对称的两  相似文献   

15.
题目:已知椭圆x92 y42=1上总有关于直线l:y=x m对称的两点,试求m的取值范围.一、运用二次方程的判别式求参数的取值范围解法1:设A(x1,y1)、B(x2,y2)是椭圆上关于直线l对称的两点,线段AB的中点为C(x0,y0).因为AB⊥l,所以直线AB的斜率为-1,于是再设直线AB的方程:y=-x b.由于A、B点既在椭圆上,又在垂直于l的直线AB上,点C既在直线AB:y0=-x0 b上,又在直线l:y0=x0 m上,从而联立:x29 y42=1y=-x b,消去y得:13x2-18bx 9b2-36=0,依韦达定理和中点坐标公式得:2x0=x1 x2=1183b,∴x0=193b.从而y0=-x0 b=143b.于是有413b=193b m,得m=-153b,而由于A…  相似文献   

16.
题目:已知直线l过坐标原点,抛物线C的顶点在原点,焦点在x轴正半轴上,若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程。 考生大部分按评分标准中的解法答题,即从设直线l的斜率κ入手,求出AA′的方程y=  相似文献   

17.
<正>一、试题呈现试题设直线y=kx+1与圆C:x2+y2+y2-2kx-2my-7=0交于M、N两点,且M、N关于直线x+y=0对称.(1)求m、k的值;(2)若直线l:x=ay+1与圆交于P、Q两点,是否存在实数a,使得OP⊥OQ?如果存在,求a的值;若不存在,请说明理由.二、解法探究解(1)m=-1,k=1.(过程略)(2)分析1方程思想联立方程组是几何问题代数化的常见途  相似文献   

18.
2013年安徽高考理科第13题:已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为__.  相似文献   

19.
姚建华 《高中生》2010,(7):25-25
例题 已知椭圆C的方程为x^2/4+y^2/3=1,试确定m的取值范围,使得对直线l:y=4x+m,椭圆C上有不同两点P、Q关于该直线对称.  相似文献   

20.
<正>优美性质抛物线C在点D处的切线为m,和直线m平行的直线l与抛物线C相交于A、B两点,则直线l与抛物线所围封闭图形的面积和△DAB面积的比值为4∶3.为证明此性质,先证明性质1.性质1直线l:y=kx+m与抛物线y=ax2+bx+c(a≠0)相交于A(x1,y1),B(x2,y2)两点,则直线与抛物线所围成封闭图形的面积为:线段AB在x轴上投影的立方的六分之一乘以二次项系数的绝对值,即  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号