首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
ABSTRACT

The velocity and magnitude in which the eccentric phase of an exercise is completed directly affects performance during the concentric phase. Therefore, the purpose of this research was to investigate the effects of eccentric phase duration on concentric outcomes at 60% and 80% of one-repetition maximum (1RM) in the squat and bench press. Sixteen college-aged, resistance-trained males completed 1RM testing, established normative eccentric durations, and performed fast (0.75 times normative) and slow (2.0 times normative) metronome-controlled eccentric duration repetitions. Outcome measures assessed during the concentric phase were: average concentric velocity (ACV), peak concentric velocity (PCV), rating of perceived exertion (RPE), range of motion (ROM), and barbell path. Eccentric duration was significantly and inversely correlated with ACV at 60% (r = ?0.408, p = 0.004) and 80% (r = ?0.477, p = 0.001) of 1RM squat. At 60% of 1RM squat, both fast and slow eccentric conditions produced greater (p < 0.001) PCV than normative duration with fast also producing greater PCV than slow (p = 0.044). Eccentric duration had no impact on RPE, ROM, or barbell path. Our results report for the first time that resistance-trained males performing a deliberately faster eccentric phase may enhance their own squat and bench press performance.  相似文献   

2.
ABSTRACT

This study examined potential differences between maximally cushioned (MAX) shoes and standard cushioned (STND) shoes during countermovement vertical jump (CMVJ) performance. Twenty-one males (23[2] y; 86.5[15.4] kg; 179.8[6.3] cm) completed eight jumps each in MAX and STND shoes while three-dimensional kinematic and kinetic data were collected. Paired-samples t-tests (α = 0.05) and Cohen’s d effect sizes (ES) were used to compare the following variables: vertical jump displacement, jump time, hip, knee and ankle joint angles at the start of the countermovement, the end of the unloading phase, the end of the eccentric phase, and at takeoff, peak joint power, and the joint contributions to total lower extremity work during the eccentric and concentric phases. The ankle was more dorsiflexed at the end of the countermovement in the MAX shoe (p = 0.002; ES = 0.55) but greater plantarflexion occurred in the STND shoes at takeoff (p = 0.028; ES = 0.56). No other differences were observed. The result of this study suggests that unique ankle joint angular positioning may be employed when wearing MAX versus STND shoes. Since the unique ankle joint positioning did not alter jump performance, potential MAX footwear users might not need to consider the potential for altered CMVJ performance when determining whether to adopt MAX footwear.  相似文献   

3.
This investigation examined effects of two exercise modes (barbell, BB; bodyweight suspension, BWS) on muscle activation, resistance load, and fatigue. During session one, nine resistance-trained males completed an elbow flexion one-repetition maximum (1RM). During sessions two and three, subjects completed standing biceps curls to fatigue at 70% 1RM utilizing a randomized exercise mode. Surface electromyography (sEMG) recorded muscle activation of the biceps brachii, triceps brachii, anterior deltoid, posterior deltoid, rectus abdominis, and erector spinae. BWS resistance load was measured using a force transducer. Standing maximal voluntary isometric contractions of the elbow flexors recorded at 90° were used to determine the isometric force decrement and rate of fatigue (ROF) during exercise. sEMG and resistance load data were divided into 25% contraction duration bins throughout the concentric phase. BWS resulted in a 67.7?±?7.4% decline in resistance load throughout the concentric phase (p?≤?0.05). As a result, BB elicited higher mean resistance loads (31.4?±?4.0?kg) and biceps brachii sEMG (84.7?±?27.8% maximal voluntary isometric contractions, MVIC) compared with BWS (20.4?±?3.4?kg, 63.4?±?21.6% MVIC). No difference in rectus abdominis or erector spinae sEMG was detected between exercise modes. Isometric force decrement was greater during BWS (?21.7?±?7.0?kg) compared with BB (?14.9?±?4.7?kg); however, BB (?3.0?±?0.8?kg/set) resulted in a steeper decline in ROF compared with BWS (?1.7?±?0.6?kg/set). The variable resistance loading and greater isometric force decrement observed suggest that select BWS exercises may resemble variable resistance exercise more than previously considered.  相似文献   

4.
5.
The aim of this study was to identify how changes in the stability conditions of a back squat affect maximal loads lifted and erector spinae muscle activity. Fourteen male participants performed a Smith Machine (SM) squat, the most stable condition, a barbell back (BB) squat, and Tendo-destabilizing bar (TBB) squat, the least stable condition. A one repetition max (1-RM) was established in each squat condition, before electromyography (EMG) activity of the erector spinae was measured at 85% of 1-RM. Results indicated that the SM squat 1-RM load was significantly (p = 0.006) greater (10.9%) than the BB squat, but not greater than the TBB squat. EMG results indicated significantly greater (p < 0.05) muscle activation in the TBB condition compared to other conditions. The BB squat produced significantly greater (p = 0.036) EMG activity compared to the SM squat. A greater stability challenge applied to the torso seems to increase muscle activation. The maximum loads lifted in the most stable and unstable squats were similar. However, the lift with greater stability challenge required greatest muscle activation. The implications of this study may be important for training programmes; if coaches wish to challenge trunk stability, while their athletes lift maximal loads designed to increase strength.  相似文献   

6.
This study aimed to determine whether kinematic data during countermovement jump (CMJ) might explain post-activation potentiation (PAP) phenomenon after an exhausting running test. Thirty-three trained endurance runners performed the Léger Test; an incremental test which consists of continuous running between two lines 20 m apart. CMJ performance was determined before (pre-test) and immediately after the protocol (post-test). Sagittal plane, video of CMJs was recorded and kinematic data were obtained throughout 2-Dimensional analysis. In addition to the duration of eccentric and concentric phases of CMJ, hip, knee and ankle angles were measured at four key points during CMJ: the lowest position of the squat, take-off, landing, and at the lowest position after landing. Additionally, heart rate was monitored, and rate of perceived exertion was recorded at post-test. Analysis of variance revealed a significant improvement in CMJ (p = 0.002) at post-test. Cluster analysis grouped according to whether PAP was experienced (responders group: RG, n = 25) or not (non-responders group: NRG, n = 8) relative to CMJ change from rest to post-test. RG significantly improved (p < 0.001) the performance in CMJ, whereas NRG remained unchanged. Kinematic data did not show significant differences between RG and NRG. Thus, the data suggest that jumping kinematic does not provide the necessary information to explain PAP phenomenon after intensive running exercises in endurance athletes.  相似文献   

7.
Many sports associated with anterior cruciate ligament (ACL) injury require athletes attend to a ball during participation. We investigated effects of attending to a ball on lower extremity mechanics during a side-cut maneuver and if these effects are consistent for males and females. Sagittal and frontal plane hip and knee kinematics and joint moments were measured during side-cut maneuvers in 19 male and 19 female National Collegiate Athletic Association division III basketball players. Participants also experienced two side-cut conditions that required attention to a ball. Our results did not indicate that the effect of attention varies with gender. However, during side-cut conditions while attending to a ball, internal knee adductor moment was 20% greater (p = 0.03) and peak knee flexion angle was 4° larger (p < 0.01). Females demonstrated 5° less hip flexion (p = 0.046), 12° less knee flexion (p < 0.01), and 4° more knee abduction (p = 0.026) at initial contact during all side-cut conditions than males. Attention to a ball may affect lower extremity mechanics relevant to ACL injury. The validity of laboratory studies of lower extremity mechanics for sports that include attention to a ball may be increased if participants are required to attend to a ball during the task.  相似文献   

8.
Sport-specific resistance training, through limb loading, can be a complimentary training method to traditional resistance training by loading the working muscles during all phases of a specific movement. The purpose of this study was to examine the acute effects of skating with an additional load on the skate, using a skate weight prototype, on kinematics, kinetics, and muscle activation during the acceleration phase while skating on a synthetic ice surface. 10 male hockey skaters accelerated from rest (standing erect with knees slightly bent) under four non-randomized load conditions: baseline 1 (no weight), light (0.9 kg per skate), heavy (1.8 kg per skate), and baseline 2 (no weight). Skating with additional weight caused athletes to skate slower (p < 0.001; η2 = 0.551), and led to few changes in kinematics: hip sagittal range of motion (ROM) decreased (2.2°; p = 0.032; η2 = 0.274), hip transverse ROM decreased (3.4°; p < 0.001; η2 = 0.494), ankle sagittal ROM decreased (2.3°; p = 0.022; η2 = 0.295), and knee sagittal ROM increased (7.8°; < 0.001, η2 = 0.761). Overall, weighted skates decreased skating velocity, but athletes maintained similar muscle activation profiles (magnitude and trends) with minor changes to their skating kinematics.  相似文献   

9.
Power is a fundamental component for many sporting activities; while the load that elicits peak power during different exercises and differences between sexes remains unclear. This study aims to determine the effect of sex and load on kinematic and kinetic variables during the mid-thigh clean pull. Men (n = 10) and women (n = 10) performed the mid-thigh clean pull at intensities of 40%, 60%, 80%, 100%, 120%, and 140% of one repetition maximum (1RM) power clean in a randomised and counter-balanced order, while assessing bar velocity, bar displacement, power, force, and impulse. Two-way analysis of variance revealed that men demonstrated significantly greater (p < 0.05) values for all variables across loads, excluding bar velocity. Men demonstrated significantly greater (p < 0.05) bar velocities with 40–80% 1RM; in contrast, women demonstrated significantly (p < 0.05) higher velocities with 120–140% 1RM. Irrespective of sex significantly greater (p < 0.05), system peak power, bar velocity, and displacement occurred with 40% 1RM. In contrast, peak force and impulse were significantly (p < 0.05) greater with 140% 1RM. When performing the mid-thigh clean pull, to maximise system power or bar velocity, lower loads (40–60% 1RM) are recommended. When training force production or impulse, higher loads (120–140% 1RM) are recommended, when using the mid-thigh clean pull.  相似文献   

10.
Technique changes in cyclists are not well described during exhaustive exercise. Therefore the aim of the present study was to analyze pedaling technique during an incremental cycling test to exhaustion. Eleven cyclists performed an incremental cycling test to exhaustion. Pedal force and joint kinematics were acquired during the last three stages of the test (75%, 90% and 100% of the maximal power output). Inverse dynamics was conducted to calculate the net joint moments at the hip, knee and ankle joints. Knee joint had an increased contribution to the total net joint moments with the increase of workload (5–8% increase, p < 0.01). Total average absolute joint moment and knee joint moment increased during the test (25% and 39%, for p < 0.01, respectively). Increases in plantar flexor moment (32%, p < 0.01), knee (54%, p < 0.01) and hip flexor moments (42%, p = 0.02) were found. Higher dorsiflexion (2%, for p = 0.03) and increased range of motion (19%, for p = 0.02) were observed for the ankle joint. The hip joint had an increased flexion angle (2%, for p < 0.01) and a reduced range of motion (3%, for p = 0.04) with the increase of workload. Differences in joint kinetics and kinematics indicate that pedaling technique was affected by the combined fatigue and workload effects.  相似文献   

11.
The aim of this study was to compare the musculature activity and kinematics of knee and hip joints during front and back squat with maximal loading. Two-dimensional kinematical data were collected and electromyographic activities of vastus lateralis, vastus medialis, rectus femoris, semitendinosus, biceps femoris, gluteus maximus and erector spinae were measured while participants (n = 12, 21.2 ± 1.9 years old) were completing front and back squat exercises with maximum loading. Paired sample t-test was used for comparisons between two techniques. Results showed that the electromyographic activity of vastus medialis was found to be greater in the front squat compared to the back squat during the ascending phase (P < 0.05, d = 0.62; 95% CI, ?15.0/?4.17) and the whole manoeuvre (P < 0.05, d = 0.41; 95% CI, ?12.8/?0.43), while semitendinosus (P < 0.05, d = ?0.79; 95% CI, 0.62/20.59) electromyographic activity was greater in the back squat during the ascending phase. Compared to the front squat version, back squat exhibited significantly greater trunk lean, with no differences occurring in the knee joint kinematics throughout the movement. Results may suggest that the front squat may be preferred to the back squat for knee extensor development and for preventing possible lumbar injuries during maximum loading.  相似文献   

12.
Multiple playing surfaces and footwear used in American football warrant a better understanding of relationship between different combinations of turf and footwear. The purpose of this study was to examine effects of shoe and stud types on ground reaction force (GRF) and ankle and knee kinematics of a 180° cut and a single-leg 90° land-cut on synthetic turf. Fourteen recreational football players performed five trials of the 180° cut and 90° land-cut in three shoe conditions: non-studded running shoe, and football shoe with natural and synthetic turf studs. Variables were analyzed with a 3 × 2 (shoe × movement) repeated measures analysis of variance (p < 0.05). Peak vertical GRF (p < 0.001) and loading rate (p < 0.001) were greater during 90° land-cut than 180° cut. For 180° cut, natural turf studs produced smaller peak medial GRFs compared to synthetic turf studs and non-studded shoe (p = 0.012). For land-cut, peak eversion velocity was reduced in running shoes compared to natural (p = 0.016) and synthetic (p = 0.002) turf studs. The 90° land-cut movement resulted in greater peak vertical GRF and loading rate compared to the 180° cut. Overall, increased GRFs in the 90° land-cut movement may increase the chance of injury.  相似文献   

13.
Abstract

Post exercise hypotension (PEH) is primarily attributed to post-exercise vasodilation via central and peripheral mechanisms. However, the specific contribution of metabolic cost during exercise, independent of force production, is less clear. This study aimed to use isolated concentric and eccentric exercise to examine the role of metabolic activity in eliciting PEH, independent of total work. Twelve participants (6 male) completed upper and lower body concentric (CONC), eccentric (ECC), and traditional (TRAD) exercise sessions matched for work (3?×?10 in TRAD and 3?×?20 in CONC and ECC; all at 65% 1RM). Blood pressure was collected at baseline and every 15?min after exercise for 120?min. Brachial blood flow and vascular conductance were also assessed at baseline, immediately after exercise, and every 30?min after exercise. ?O2 was lower during ECC compared to CONC and TRAD (?2.7?mL/Kg/min?±?0.4 and ?2.2?mL/Kg/min?±?0.4, respectively p?<?0.001). CONC augmented the PEH response (Peak ΔMAP ?3.3?mmHg?±?0.9 [mean?±?SE], p?=?0.006) through 75?min of recovery and ECC elicited a post-exercise hypertensive response through 120?min of recovery (Peak ΔMAP +4.5?mmHg?±?0.8, p?<?0.001). CONC and TRAD elicited greater increases in brachial blood flow post exercise than ECC (Peak Δ brachial flow +190.4?mL/min?±?32.3, +202.3?mL/min?±?39.2, and 69.6?mL/min?±?19.8, respectively, p?≤?0.005), while conductance increased immediately post exercise in all conditions and then decreased throughout recovery following ECC (?32.9?mL/min/mmHg?±?9.3, p?=?0.005). These data suggest that more metabolically demanding concentric exercise augments PEH compared to work-matched eccentric exercise.  相似文献   

14.
This study examined trunk muscle activation, balance and proprioception while squatting with a water-filled training tube (WT) and a traditional barbell (BB), with either closed (CE) or open eyes (OE). Eighteen male elite Gaelic footballers performed an isometric squat under the following conditions: BB-OE, BB-CE, WT-OE and WT-CE. The activity of rectus abdominis (RA), external oblique (EO) and multifidus (MF) was measured using electromyography, along with sway of the centre of pressure (CoP) using a force platform. Only the EO and the MF muscles exhibited an increased activity with WT (p < 0.01). In the medio-lateral direction both the velocity and range of the CoP increased significantly with WT (p < 0.01). Interestingly, the range of the CoP for the WT-CE condition was significantly lower than WT-OE (p < 0.05, d = 0.44), whilst the velocity of the CoP was marginally reduced (d = 0.29). WT elicited a greater level core muscle activation and created a greater challenge to postural stability when compared to a BB. It appears that WT does not benefit from vision but emphasises the somatosensory control of balance. The use of WT may be beneficial in those sports requiring development of somatosensory/proprioceptive contribution to balance control.  相似文献   

15.
The acute influence of chain-loaded variable resistance exercise on subsequent free-weight one-repetition maximum (1-RM) back squat performance was examined in 16 recreationally active men. The participants performed either a free-weight resistance (FWR) or chain-loaded resistance (CLR) back squat warm-up at 85% 1-RM on two separate occasions. After a 5-min rest, the participants attempted a free-weight 1-RM back squat; if successful, subsequent 5% load additions were made until participants failed to complete the lift. During the 1-RM trials, 3D knee joint kinematics and knee extensor and flexor electromyograms (EMG) were recorded simultaneously. Significantly greater 1-RM (6.2?±?5.0%; p?p?p?>?.05) was found in concentric EMG, eccentric or concentric knee angular velocity, or peak knee flexion angle. Performing a CLR warm-up enhanced subsequent free-weight 1-RM performance without changes in knee flexion angle or eccentric and concentric knee angular velocities; thus a real 1-RM increase was achieved as the mechanics of the lift were not altered. These results are indicative of a potentiating effect of CLR in a warm-up, which may benefit athletes in tasks where high-level strength is required.  相似文献   

16.
Inertial Measurement Units (IMUs) may offer an ecologically valid, reliable, and practical method for biomechanical performance analysis. With such potential in mind, Part 1 of this study examined the accuracy of IMUs gyroscopes with an optical system (Cortex 3.3). A calibration formula standardised the IMUs angular velocity output with the optical system. The percentage differences between the two measures = 0.5% (p < 0.05), suggest IMU’s efficacy for application. In Part 2, the aim was to examine and understand how dive flight angular velocity time series plots change and increase according to dive degree of difficulty. With IMUs attached to three competitive divers performing forward somersault dives, dive flight kinematics were assessed. Biomechanically, a 4½ tuck somersault dive differed to lower degree of difficulty dives in terms of: (1) a rotational delay immediately after takeoff (to gain greater vertical translation); (2) increased total time of flight; (3) greater muscle effort to resist increased centrifugal forces produced by the increased angular velocity (1,090 °/s); and (4) greater eccentric control during deceleration allow a safe and vertical entry into the water. IMUs can be effectively utilised and integrated into contexts such as springboard diving for performance analysis and optimisation purposes.  相似文献   

17.
Abstract

The aim of this study was to examine the effect of concentric warm-up exercise on eccentrically induced changes in muscle strength, range of motion, and soreness of the elbow flexors. Ten resistance-exercise naïve participants performed intermittent incremental eccentric actions (42 in total) of the elbow flexor muscles of each arm to induce muscle damage. The arms of each participant were randomly assigned either to a pre-eccentric exercise warm-up involving intermittent concentric exercise (warm-up) or no prior exercise (control). Strength, range of motion, and ratings of soreness were recorded before and 1, 2, 3, 4, and 7 days after exercise. Strength, range of motion, and soreness during muscular movements changed over time (P at most 0.01; Cohen's d at least 0.51, medium). There was an interaction (P < 0.001) for strength, showing a smaller reduction after exercise for warm-up than control (P < 0.001, d = 2.44, large effect). The decreased range of motion was less for warm-up than control for the arm while extended (P < 0.001), flexed (P = 0.002), and relaxed (P = 0.004). Muscle soreness was reduced for the warm-up group, while the muscle was flexed, extended, and relaxed compared with control (P < 0.001). The results demonstrate that a concentric warm-up exercise attenuates the reduction in loss of strength, range of motion, and muscle soreness after eccentric-exercise-induced muscle damage and might allow higher intensities of training to be performed.  相似文献   

18.
The treadmill is an attractive device for the investigation of human locomotion, yet the extent to which lower limb kinematics differ from overground running remains a controversial topic. This study aimed to provide an extensive three-dimensional kinematic comparison of the lower extremities during overground and treadmill running. Twelve participants ran at 4.0 m/s ( ± 5%) in both treadmill and overground conditions. Angular kinematic parameters of the lower extremities during the stance phase were collected at 250 Hz using an eight-camera motion analysis system. Hip, knee, and ankle joint kinematics were quantified in the sagittal, coronal, and transverse planes, and contrasted using paired t-tests. Of the analysed parameters hip flexion at footstrike and ankle excursion to peak angle were found to be significantly reduced during treadmill running by 12° (p = 0.001) and 6.6° (p = 0.010), respectively. Treadmill running was found to be associated with significantly greater peak ankle eversion (by 6.3°, p = 0.006). It was concluded that the mechanics of treadmill running cannot be generalized to overground running.  相似文献   

19.
The purpose of this study was to compare force– and power–time curve variables during jumping between Division I strength-matched male and female basketball athletes. Males (n?=?8) and females (n?=?8) were strength matched by testing a one-repetition maximum (1RM) back squat. 1RM back squat values were normalised to body mass in order to demonstrate that strength differences were a function of body mass alone. Subjects performed three countermovement jumps (CMJ) at maximal effort. Absolute and relative force– and power–time curve variables from the CMJs were analysed between males and females. Average force– and power–time curves were generated for all subjects. Jump height was significantly greater (p?≤?.05) in males than females. Absolute force was higher in males during the concentric phase, but not significantly different (p?≥?.05) when normalised to body mass. Significance was found in absolute concentric impulse between sexes, but not when analysed relative to body mass. Rate of force development, rate of power development, relative peak force, and work were not significantly different between sexes. Males had significantly greater impulse during the eccentric phase as well as peak power (PP) during the concentric phase of the CMJ than did females in both absolute and relative terms. It is concluded that sex differences are not a determining factor in measured force during a CMJ when normalised to body mass between strength-matched subjects. However, eccentric phase impulse and concentric phase PP appear to be influenced by sex differences independent of matching strength levels.  相似文献   

20.
ABSTRACT

In this study, we aimed to clarify the characteristics of neuromuscular function, kinetics, and kinematics of the lower extremity during sprinting in track and field athletes with a history of strain injury. Ten male college sprinters with a history of unilateral hamstring injury performed maximum effort sprint on an athletic track. The electromyographic (EMG) activity of the long head of the biceps femoris (BFlh) and gluteus maximus (Gmax) muscles and three-dimensional kinematic data were recorded. Bilateral comparisons were performed for the EMG activities, pelvic anterior tilt angle, hip and knee joint angles and torques, and the musculotendon length of BFlh. The activity of BFlh in the previously injured limb was significantly lower than that in the uninjured limb during the late-swing phase of sprinting (p < 0.05). However, the EMG activity of Gmax was not significantly different between the previously injured and uninjured limbs. Furthermore, during the late-swing phase, a significantly more flexed knee angle (p < 0.05) and a decrease in BFlh muscle length (p < 0.05) were noted in the injured limb. It was concluded that previously injured hamstring muscles demonstrate functional deficits during the late swing phase of sprinting in comparison with the uninjured contralateral muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号