共查询到20条相似文献,搜索用时 15 毫秒
1.
三角函数是角的函数,角的范围决定了三角函数的性质和角的取值,所以在解决三角函数的许多问题时,我们都需要对角的范围进行分析和判断,对角的范围的合理确定将成为我们能否正确解决问题的关键,在实际解决问题时,我们可以从以下三个方面来确定角的范围。 相似文献
3.
求角是三角函数中的一个重要问题,它包括了三角函数中的主要思想和方法,所以在三角的学习中,我们应该对求角的问题进行仔细的研究,从中我们可以发现确定角的范围是求角必须逾越的一道坎. 相似文献
4.
三角函数的求值问题是一类重要的问题,主要可分为给角求式(值)、给式求式、给式求角三类.解决后两类问题的关键在于确定角的取值范围,只有确定了角的范围才能判断所求三角函数式的符号,从而正确地求出角或式的值.下面介绍确定角的范围时最常用的四种方法. 相似文献
5.
给定条件求角是三角函数中一类常见的问题,其常用的求解方法是:(1)求出目标角的某个三角函数值;(2)根据目标角的范围确定角的大小.但是笔者在教学中发现,许多学生由于不能正确处理好目标角的范围而致误,下面结合实例介绍两种处理目标角范围的实用方法. 相似文献
6.
7.
文 1、文 2分别利用图象法和均值代换法解决了一类在给定条件下三角函数取值范围问题 .本文利用函数的单调性来解决这类问题 (下面的例子都是文 1、2中的例题 ,以后不再说明 ) .例 1 已知 sin x+ 2 cos y=2 ,求 2 sin x+ cos y的取值范围 .解 由条件得 sin x=2 ( 1 - cos y) ,1∴ 2 sin x+ cos y=4 - 3cos y,2由 1 ,有 2 | ( 1 - cos y) | =| sin x|≤ 1 ,∴ 12 ≤cos y≤ 32 .又 | cos y|≤ 1 ,∴ 12 ≤cos y≤ 1 . 3令 t=cos y,则由 2 ,3有2 sin x+ cos y=4 - 3t,其中 t∈ [12 ,1 ].令 f( t) =4 - 3t ( 12 ≤ t≤ 1 ) .易知 f( t)在 [12… 相似文献
8.
殷长征 《数理天地(高中版)》2012,(9):8-9,11
角的范围决定着三角函数的取值,三角函数值又决定了角的范围.若不能把握两者之间的制约关系,仅仅从表面现象出发,则可能出现错误.下面数例说明在三角函数问题中,对角的范围进行进一步缩小的重要性,以及缩小角范围的方法. 相似文献
9.
三角函数是高中数学的重要组成部分,也是高考中重点考查的内容之一,试题分值所占比例较大,具有举足轻重的地位.特别涉及三角求值又是高考中的热点问题,而求值中经常要用到平方公式,且需进行开方运算, 相似文献
10.
函数是中学数学的重要知识,也是高考数学考查的重点.笔者查阅了从2000年到2008年全国各地的高考数学试卷,发现关于函数单调区间中含参数范围的确定问题是一个时常会考到的题型.这类问题可以同导数、不等式联系起来,涉及数形结合思想、 相似文献
12.
确定不等式恒成立的参数的取值范围,是中学数学的难点之一,也是学习的重点,然而,怎样确定其取值范围呢?本文就此类问题的几种基本解法加以论述. 相似文献
13.
陆永军 《中学数学教学参考》2000,(4):61-62
已知某些条件求三角函数的值或对应角是三角习题中常见题型 .这类习题难度不大 ,但学生在处理此类习题时常出现漏解、增解现象 .究其原因 ,是对题设中隐含着的角的范围挖掘不够所致 .本文结合具体例子谈谈这类习题中应注意挖掘的几个方面 .1.注意轴线角的挖掘轴线角是指角的终边落在坐标轴 (x轴或y轴 )上的角 ,这些角的三角函数值为特殊值或不存在 .解题时应注意挖掘 .例 1 已知sinα =2sinβ ,tgα =3tgβ,求cosα .误解 :∵cosα =sinαtgα=2sinβ3tgβ=23 cosβ ,∴cosβ =32 cosα .又sinβ … 相似文献
14.
三角函数是中学数学重要内容之一 ,在高考命题中占有一定比重 ,就命题难度虽属中档偏下 ,但学生在解题中仍然出现许多错误 .本文收集了学生在三角题中常犯错误 ,加以辨析 ,以期找出错误根源 ,以防学生在解题中再次出现类似错误 ,使学生真正掌握三角函数知识 .1 忽视函数定义域而致误例 1 函数 f(x) =cos3x-cosxcosx 的值域是( ) .A .(- 4 ,0 ] B .[- 4 ,0 )C .[- 4 ,0 ] D .[0 ,4 ].错选 由 f(x) =- 2sin2xsinxcosx =-4sin2 xcosxcosx =- 4sin2 x ,而 0≤sin2 x≤ 1,… 相似文献
15.
<正> 求角的大小是三角函数中的常见题型,同学们在求解这类问题时,由于对角的范围限制得过于宽松而往往产生增解.下面通过实例,提醒读者注意:求角的大小时,除了注意题设中给定的范围限制外,还要注意利用题设中的隐含条件缩小角的范围,避免出现增解. 相似文献
16.
17.
18.
19.
《昭通师范高等专科学校学报》2017,(Z1)
同角三角函数关系式sin2α+cos2α+cos2α=1tanα=(sinα)/(cosα)在解决三角函数中的化简、求值、恒等变换中占有重要地位,如何让学生在课堂上完成对它的理解及应用便成了一个重要的问题。通过下面的对同角三角函数的基本关系的教学设计,探讨同角三角函数的基本关系教学。 相似文献
20.