首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The aim of this study was to compare the somersaulting techniques used in the 16 highest-scoring and 16 lowest-scoring Roche vaults. Our hypothesis was that the gymnasts performing the highest-scoring Roche vaults would demonstrate a better technique than those performing the lowest-scoring Roche vaults while on the horse (pushing off the horse more effectively), somersaulting (executing most of the required somersaults higher in flight), and landing (showing a greater control). A 16-mm motion picture camera, operating at 100 Hz, recorded the vaults during the official competition. The two-dimensional direct linear transformation was used for spatial reconstruction. The results of t-tests (P < 0.05) indicated that, compared with the low-scoring gymnasts, the high-scoring gymnasts had: (1) greater height of body centre of mass and a more fully extended body position at the horse take-off; (2) greater height of body centre of mass at the peak of post-flight, knee release, and touchdown on the mat; (3) greater horizontal and vertical displacements of body centre of mass, greater somersaulting rotation, and longer time from the knee release to mat touchdown; and (d) markedly smaller landing point deductions. In conclusion, a successful Roche vault is likely when the focus is on: (a) leaving the horse with a large vertical velocity in an extended body position to achieve a high trajectory of centre of mass by first extending the legs, then immediately pushing off the horse vigorously, using the muscles of the upper extremity; (b) grasping the knees immediately after the take-off from the horse, achieving the tightly tucked body position early during the ascent to the peak, and completing two-thirds of the required somersaults at a great height; (c) releasing the knees and extending the body above the top level of the horse; and (d) contacting the mat with a high body centre of mass position.  相似文献   

2.
The 16 highest-scored Roche vaults (G1) performed during the 2000 Olympic Games were compared with those receiving the 16 lowest-scores (G2). A 16-mm motion picture camera operating at 100 Hz recorded the vaults during the competition. The results of t tests (p < .05) indicated G1, compared to G2, had (a) shorter time of board support, greater normalised average upward vertical force and backward horizontal force exerted by the board, greater change in the vertical velocity while on the board, and greater vertical velocity at board take-off, (b) comparable linear and angular motions in pre-flight, (c) smaller backward horizontal impulse exerted by the horse, smaller loss of the horizontal velocity while on the horse, and greater horizontal and vertical velocities at horse take-off, (d) greater height and larger horizontal distance of post-flight, (e) higher body mass centre at knee release, and (f) higher mass centre, greater normalised moment of inertia, and smaller vertical velocity at mat touchdown. Therefore, gymnasts and coaches should focus on sprinting the approach; blocking and pushing-off the take-off board rapidly and vigorously; departing the board with a large vertical velocity; exerting large downward vertical force and small forward horizontal force from the hand-stand position while on the horse; departing the horse with large horizontal and vertical velocities; and completing the majority of the double salto forward near the peak of trajectory and releasing the knees above the top of the horse to prepare for a controlled landing.  相似文献   

3.
Gymnastics     
The 16 highest‐scored Roche vaults (G1) performed during the 2000 Olympic Games were compared with those receiving the 16 lowest‐scores (G2). A 16‐mm motion picture camera operating at 100 Hz recorded the vaults during the competition. The results of t tests (p < .05) indicated G1, compared to G2, had (a) shorter time of board support, greater normalised average upward vertical force and backward horizontal force exerted by the board, greater change in the vertical velocity while on the board, and greater vertical velocity at board take‐off, (b) comparable linear and angular motions in pre‐flight, (c) smaller backward horizontal impulse exerted by the horse, smaller loss of the horizontal velocity while on the horse, and greater horizontal and vertical velocities at horse take‐off, (d) greater height and larger horizontal distance of post‐flight, (e) higher body mass centre at knee release, and (f) higher mass centre, greater normalised moment of inertia, and smaller vertical velocity at mat touchdown. Therefore, gymnasts and coaches should focus on sprinting the approach; blocking and pushing‐off the take‐off board rapidly and vigorously; departing the board with a large vertical velocity; exerting large downward vertical force and small forward horizontal force from the handstand position while on the horse; departing the horse with large horizontal and vertical velocities; and completing the majority of the double salto forward near the peak of trajectory and releasing the knees above the top of the horse to prepare for a controlled landing.  相似文献   

4.
The optimum pre-flight characteristics of the Hecht and handspring somersault vaults were determined using a two-segment simulation model. The model consisted of an arm segment and a body segment connected by a frictionless pin joint, simulating the vault from the Reuther board take-off through to landing. During horse contact, shoulder torque was set to zero in the model. Five independent pre-flight variables were varied over realistic ranges and an objective function was maximized to find the optimum pre-flight for each vault. The Hecht vault required a low trajectory of the mass centre during pre-flight, with a low vertical velocity of the mass centre and a low angular velocity of the body at horse contact. In contrast, the optimum handspring somersault required a high pre-flight trajectory, with a high angular velocity of the body and a high vertical velocity at horse contact. Despite the simplicity of the model, the optimum pre-flights were similar to those used in competitive performances.  相似文献   

5.
The traditional “horse” was replaced by a new vaulting “table” in artistic gymnastics competitions in 2001.The aim of this study was to determine whether the table led to a change in vaulting technique. This was achieved by comparing three-dimensional video-based analyses (50 Hz) of selected biomechanical discrete and continuous variables across four elite male gymnasts performing a series of handspring front somersault vaults on the traditional horse and the new table. Individual joint and inter-segment coupling (continuous relative phase) were used to quantify techniques used on the two apparatuses. Differences were attributed in part to the design and construction of the new table. No differences were observed for the approach and take-off from the board. Significant differences in hip flexion at board take-off and strike angle on the table were observed. One of the effects of the latter was an increase in vertical take-off velocity compared with the horse. Individual strategies were observed in hip and shoulder coordination patterns that were obscured when group data were considered. Close monitoring of the evolution of skill on this new apparatus is paramount for gymnastics coaching, and further studies of current elite competitive vaulting techniques are required.  相似文献   

6.
Abstract

One of the most fundamental skills on the pommel horse is double leg circles (circles). Circles can be performed on all parts of the pommel horse. It was hypothesized that the different sets of physical constraints of the apparatus require a gymnast to adapt circles technique. The purpose of this study was to quantify how gymnasts modify their technique during circles to accommodate different physical obstacles due to different support surfaces and body orientations. To investigate these adaptations, a comparison of the two most common circles on pommel horse – namely, circles in cross support (cross-circles) and circles in side support (side-circles) – was carried out. Seven elite male gymnasts performed three sets of 10 cross-circles and side-circles on a pommel horse. Three-dimensional coordinates were acquired using 12 Qualisys ProReflex motion tracking cameras operating at 120 Hz. Temporal characteristics, the motion of the centre of mass, and the body angles – flexion and lateral flexion – were analysed. We found that cross-circles took less time to complete a single circle (0.92±0.02 vs. 0.95±0.02 s), had a smaller ratio for the rear support phase (0.15±0.02 vs. 0.18±0.03), a narrower supporting-hand distance (0.33±0.03 vs. 0.52±0.00 m), greater flexion of the body over the rear support phase (44±12° vs. 27±8°), and less lateral flexion of the body over the single-hand support phase (entry: 20±5° vs. 35±3°; exit: 26±4° vs. 33±4°) than side-circles. Our results suggest that gymnasts adapt their technique to the physical constraints imposed by the shape of the pommel horse and the location and orientation of the circles. Cross-circles were characterized by a high rear support position with a narrower hand-spacing, which would require excellent shoulder flexibility and strength. Consequently, lack of these traits may explain the need for greater body flexion in cross-circles than in side-circles during rear support. Understanding the technical differences will facilitate an effective transfer of the technical similarities among different types of circles.  相似文献   

7.
Sagittal plane SVHS video recordings (50 Hz) were made of horses jumping the wall at an international Puissance competition. Video sequences were manually digitized and six kinematic variables at take-off were analyzed. Nine horses started the competition with the fence height at 1.80 m, and two horses attempted the fence in the fifth and final round with the fence height at 2.27 m. For successful performances, fence height was correlated with the following take-off variables: vertical velocity of the centre of mass (r = 0.45, p = 0.03); height of centre of mass (r = 0.44, p = 0.04); distance of centre of mass from fence (r = 0.46, p = 0.03); and distance from leading hind limb to centre of mass (r = -0.61, p < 0.01). These results indicated that body position at take-off is the most important aspect when jumping high fences. This is the first known study that has examined horses jumping over a Puissance wall. The results should help horse riders and trainers improve performance in Puissance jumping horses, and perhaps help in the early selection of horses with a talent for jumping high fences.  相似文献   

8.
The aim of this study was to determine the mechanical variables that govern success of the Hecht vault. The participants were 122 male gymnasts from 30 countries performing the vault at the 1995 World Gymnastics Championships. The vaults were filmed using a Photosonics 16-mm motion picture camera operating at 100 Hz. Approximately 80 frames were digitized for each vault analysed. The method of Hay and Reid was used to develop a theoretical model to identify the mechanical and physical variables that determine linear and angular motions of the vault. Correlational analysis was used to establish the strength of the relationship between the causal mechanical variables identified in the model and the judges' scores. Significant correlations (P ? 0.005) indicated that the following were important determinants of success: large horizontal and vertical velocities at take-off from the board and the horse; large vertical and angular distances of pre-flight; large vertical impulses of high force and short duration exerted on the horse and the resulting large changes in vertical velocity on the horse; and large horizontal and vertical distances and long times of post-flight. Of the 18 significant variables identified in the present study, the angular distance of pre- and post-flights, the horizontal velocity and angular momentum at take-off from the horse, and the average moment of inertia and duration of post-flight collectively accounted for 57% of the variation in the judges' scores.  相似文献   

9.
The aim of this study was to determine the mechanical variables that govern success of the Hecht vault. The participants were 122 male gymnasts from 30 countries performing the vault at the 1995 World Gymnastics Championships. The vaults were filmed using a Photosonics 16-mm motion picture camera operating at 100 Hz. Approximately 80 frames were digitized for each vault analysed. The method of Hay and Reid was used to develop a theoretical model to identify the mechanical and physical variables that determine linear and angular motions of the vault. Correlational analysis was used to establish the strength of the relationship between the causal mechanical variables identified in the model and the judges' scores. Significant correlations (P < 0.005) indicated that the following were important determinants of success: large horizontal and vertical velocities at take-off from the board and the horse; large vertical and angular distances of pre-flight; large vertical impulses of high force and short duration exerted on the horse and the resulting large changes in vertical velocity on the horse; and large horizontal and vertical distances and long times of post-flight. Of the 18 significant variables identified in the present study, the angular distance of pre- and post-flights, the horizontal velocity and angular momentum at take-off from the horse, and the average moment of inertia and duration of post-flight collectively accounted for 57% of the variation in the judges' scores.  相似文献   

10.
Research to date has demonstrated the importance of running speed and an accurate take-off on gymnastics vaulting performance (Krug et al., 1998; Bohne et al., 2000). Current training practice for gymnastics vaulting is to stereotype the 15-25 m run-ups to the board, which assumes that a fast and reliable approach is best controlled predominantly without visual feedback. Incidences where gymnasts make errors during their run-ups, often landing onto the back of the board, occur frequently, even at the international level. The standard deviation method (e.g. Lee et al., 1982) for identifying visual regulation in long jump run-ups was employed in this first exploration of gymnastics vaulting to examine whether visual regulation processes are utilised. Secondly, the question of how a small number of gymnasts can run fast during the approach and perform more difficult vaults was addressed. Five elite female gymnasts aged 13-15 years performed five round-off entry vaults. One panning 50 Hz video camera recorded each trial from an elevated platform to evaluate the approach step, hurdle, and round-off characteristics, whilst two 250 Hz cameras recorded vaulting performance. Two qualified judges viewed each vaulting trial and provided a performance score. A precursor for a fast take-off from the board when vaulting is to utilise vision early to control the approach kinematics (p = 0.02). High take-off velocity was directly related to judge's score (p = 0.03). Coaches need to supplement gymnasts' vault training to include exercises that improve the gymnasts' ability to visually regulate their gait pattern whilst running.  相似文献   

11.
The two-handed dyno technique was studied in nine experienced climbers. According to textbooks, the preferred technique is to jump only as high as necessary and to grab the upper hold exactly at the dead point (highest position of the body centre of mass). Piezoelectric force transducers were connected to the right and left footholds and to the lower and upper handholds. From the forces, the vertical take-off velocity and the jump height were calculated. The results showed that in unsuccessful jumps, the vertical take-off velocity is too small. In successful jumps, however, the vertical take-off velocity is higher than required. In order to reach the same required minimal height, the successful jumper produced a higher force than the unsuccessful (including marginal fail) jumper did. The force produced by the feet was approximately 1.8 times higher than that of the hands. Unsuccessful jumps were significantly closer to the dead point than successful ones. The peak force at the fingers after touchdown at the upper hold ranged from 1.1 to 1.63 times body weight. Overshooting, i.e. jumping higher than required resulted in a smaller peak force and a greater chance of performing a successful jump. In successful jumps, the climber jumps higher than required and grabs the upper hold before and below the dead point. Furthermore, the closer to the dead point the climber grasps the upper hold, the higher is the peak reaction force at the fingers. The advice for the climber is to jump higher than necessary (at least 10 cm), and to grab the handhold before the dead point. This results in a high success rate and a minimal finger injury risk.  相似文献   

12.
跳远起跳技术的运用在学界一直存有争议,为探讨跳远起跳技术的生物力学原理,选取跳远起跳动作作为研究对象,建立起跳动作的数学模型并在计算机上实施基于肌肉动力学层面的运动模拟。模拟结果表明:在增大人体重心垂直速度和重心的腾起角方面,膝关节肌较之髋关节肌都有更为显著的作用;在相同的着地距离下,增大小腿环节角与增大大腿环节角相比明显有利。  相似文献   

13.
ABSTRACT

The aim of this study was to investigate if a visible target for the hurdle take-off would influence the onset of visual regulation and hurdle kinematics during the approach run. Ten elite male gymnasts (age 23.4 ± 4.9 years, height 1.68 ± 0.06 m, mass 63.3 ± 6.2 kg) performed six handspring vaults with a full approach run under two controlled conditions: (a) with a 5-cm white tape on the runway marking the last touchdown of the approach run and the commencement of the hurdle (tape condition—T) and (b) under the standard vaulting regulations (non-tape condition—NT). Spatiotemporal data of the approach run and the hurdle were collected by four stationary and one panning cameras (sampling rate 300 fps). Eight out of 10 gymnasts commenced regulation earlier under T than under NT. Under T condition, horizontal velocity (Vx to = 9.06 ± 0.41 m/s) and vertical velocity (V to = 9.35 ± 0.37 m/s) was significantly faster than under NT condition (Vx to = 8.85 ± 0.49 m/s; V to = 9.11 ± 0.47 m/s). Introducing a target for the hurdle facilitates an early onset of step regulation and significantly improves the kinematics of the hurdle.  相似文献   

14.
The aim of this study was to analyse the principal mechanics of circles. Seventeen university male gymnasts performed circles on an instrumented pommel horse model that enabled the pommel reaction forces to be recorded at 1000 Hz with two force plates. The circles were also videotaped using two digital video cameras operating at 60 frames per second. During circles, the vertical component of the reaction forces peaked in the double-hand support phases. Changes in the velocity of the centre of mass corresponded to the change in the tangential components of horizontal reaction forces. The velocity of the centre of mass had its peaks in the single-hand support phases and its local minimums in the double-hand support phases. The velocity of the ankles and that of the centre of mass of the head and trunk were minimal in the single-hand support phases and were maximal in the double-hand support phases. These results suggest that the circles were composed of vertical movements and two kinds of rotations: rotation of the centre of mass and rotation of the body itself about the centre of mass. These two kinds of rotations, which influence the legs' rotational velocity, are phase dependent. To further our understanding of circles, research on circles in different orientations on the pommel horse will be beneficial.  相似文献   

15.
目的:研究踺子转体180°前手翻接直体前空翻类跳马动作,揭示这类跳马的运动学规律和技术特点.方法:对程菲和洪淑贞完成的"踺子转体180°前手翻接直体前空翻转体180"(简称"R180"),以及程菲完成的"踺子转体180°前手翻接直体前空翻转体540°"("程菲跳")进行三维运动学分析,对三组跳马动作身体重心的水平速度和垂直速度、主要关节的位移、关节角度、身体翻转角速度等运动学参数进行对比分析.结果:三组动作踏板时重心水平速度基本相同,踏板及推手阶段关键位置的关节角度相近,但"程菲跳"推离马重心垂直速度和第二腾空时间明显高于"R180",第二腾空转体角速度略大于"R180"的3倍,而翻腾角速度略小.结论:踺子转体180°前手翻接直体前空翻类跳马动作触马前的技术动作基本相同,难度较高的技术动作需要更高的推离马垂直速度和更快的第二腾空转体角速度.  相似文献   

16.
This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.  相似文献   

17.
18.
我国部分优秀男子跳远运动员起跳环节肌肉用力特征   总被引:2,自引:1,他引:1  
通过表面肌电遥测和高速摄影同步测试,揭示优秀跳远运动员起跳环节肌肉用力特征.结果显示:在起跳环节中,股外侧肌、股内侧肌、股二头肌、比目鱼肌、腓肠肌是起跳腿的主要用力肌肉;在起跳腿即将着地前,所测肌肉均有较明显的预激活现象;着地后,肌肉用力的激活顺序依次为胫骨前肌、股二头肌与股内侧肌、股外侧肌、比目鱼肌、腓肠肌内侧头、股直肌、臀大肌;肌肉用力的失活顺序依次为胫骨前肌、股直肌、股内侧肌、股外侧肌、臀大肌、腓肠肌、股二头肌、比目鱼肌;肌肉用力持续时间长短依次为股二头肌、比目鱼肌、股外侧肌、腓肠肌内侧头和股内侧肌、臀大肌、股直肌、胫骨前肌.起跳腿拮抗肌共同收缩的特征为:缓冲阶段踝关节拮抗肌共同收缩最强烈,而在蹬伸阶段膝关节拮抗肌共同收缩最强烈.  相似文献   

19.
The aim of this study was to develop insight into the whole-body and multi-joint kinematic control strategy variability associated with the execution of fundamental backward rotating dismounts from beam. Two-dimensional joint centre coordinate data were obtained for ten backward piked and backward tucked somersault dismount skills performed by four female gymnasts (N = 80 trials). Gymnast-specific and group variability in whole-body and multi-joint discrete kinematic measures were compared for the aerial and impact phase of backward piked and backward tucked skills. The backward tucked skill was executed using a more variable knee joint angular velocity at take-off (mean difference in standard deviation ± SD: -2.6 ± 1.0 rad · s(-1); P < 0.01) than the backward piked skill. The variability in the whole-body and multi-joint kinematic responses produced between the impact phases of each skill was gymnast-specific. The greater variability in the localized knee joint action at take-off was considered indicative of the diverse shape element demands and key performance outcomes of the two skills. Self-selected modulations to the multi-joint kinematic strategy used in the impact phase suggested customization of the joint loading adjustments in executing the fundamental dismount skills.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号