首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two rugby union forward packs of differing ability levels were examined during scrummaging against an instrumented scrum machine. By systematically moving the front‐row of the scrum along the scrum machine, kinetic data on each front‐row forward could be obtained under all test conditions. Each forward pack was tested under the following scrummaging combinations: front‐row only; front‐row plus second‐row; full scrum minus side‐row, and full scrum. Data obtained from each scrum included the three orthogonal components of force at engagement and the sustained force applied by each front‐row player. An estimate of sub‐unit contributions was made by subtracting the total forward force on all three front‐row players from the total for the complete scrum. Results indicated the primary role of the second‐row appeared to be application of forward force. The back‐row ('number eight') forward did not substantially contribute any additional forward force, and added only slightly to the lateral and vertical shear force experienced by the front‐row. The side‐row contributed an additional 20–27% to the forward force, but at the expense of increased vertical forces on all front‐row forwards. Results of this investigation are discussed in relation to rule modification, rule interpretation and coaching.  相似文献   

2.
ABSTRACT

The purpose of this study was to investigate the effect of variations in the alignment of the feet on scrum kinetics during machine scrummaging. Twenty nine rugby forwards from amateur-level teams completed maximal scrum efforts against an instrumented scrum machine, with the feet in parallel and non-parallel positions. Three-dimensional forces, the moment about the vertical axis and sagittal plane joint angles were measured during the sustained pushing phase. There was a decrease in the magnitude of the resultant force and compression force in both of the non-parallel conditions compared to parallel and larger compression forces were associated with more extended hip and knee angles. Scrummaging with the left foot forward resulted in the lateral force being directed more towards the left and the turning moment becoming more clockwise. These directional changes were reversed when scrummaging with the right foot forward. Scrummaging with the right foot positioned ahead of the left may serve to counteract the natural clockwise wheel of the live scrum and could be used to achieve an anti-clockwise rotation of the scrum for tactical reasons. However, this would be associated with lower resultant forces and a greater lateral shear force component directed towards the right.  相似文献   

3.
Scrummaging is a major component of Rugby Union gameplay. Successful scrummaging is dependent on the coordination of the forward players and the strength of the eight individuals. The study aim was to determine whether individual scrummaging kinetics and other candidate factors associated with scrummaging performance discriminate team scrum performances. Sixteen club-level forwards (stature: 1.80?±?0.1?m; mass: 99.0?±?18.2?kg) were initially divided into two scrummaging packs. A total of 10 various scrum permutations were tested, where players were randomly swapped between the two packs. Winning scrums were determined by two observers on opposite sides of the scrum. Fatigue (100?mm visual analogue scale (VAS)) and scrummaging effort (6–20 rating of perceived exertion (RPE)) were assessed following each scrum contest. Individual scrummaging kinetics were acquired through an instrumented scrum ergometer and muscular power indicated through vertical jump heights. Student’s t-tests were used to differentiate between winning and losing scrum packs. VAS and RPE were assessed using repeated measures ANOVAs. Winning scrum packs had significantly larger combined force magnitudes (p?<?.002), regardless of the player contribution calculations. Additionally, winning packs had less individual movement (p?=?.033) and higher combined vertical jump heights (p?<?.001) but were not significantly heavier (p?=?.759) than losing scrum packs. While perceived VAS and RPE values progressively increased (p?<?.001), no differences in the individual scrum magnitudes were observed between the 1st and 10th scrum (p?=?.418). The results indicated that the combination of individual forces, variation in movement and factors related to scrummaging performance, such as vertical jump height, were associated with team scrummaging success.  相似文献   

4.
In this study, we examined the relationship between anthropometric, strength and power characteristics of rugby forwards, their body position when scrummaging, and their ability to apply force when scrummaging. Force applied to an instrumented scrum machine was measured for 56 players, both individually and as scrum packs. Measurements of body position for individuals were made by digitizing videotape records of the trials. Forty players subsequently had their anthropometry assessed and completed several strength and power tests. Body mass, each component of somatotype, maximal anaerobic power developed on a cycle ergometer, and isokinetic knee extension strength correlated significantly with individual scrummaging force. A regression model (P?0.001) including body mass, mesomorphy, maximal anaerobic power and hip angle while in the scrummaging position accounted for 45% of the variance in individual scrummaging force. The packs that produced the largest scrummaging forces were, in general, characterized by a greater pack force to sum of individual force ratio than the packs producing lower forces. Our results emphasize the need for a scrum pack to develop technique and coordination as a unit to maximize scrummaging force.  相似文献   

5.
In this study, we examined the relationship between anthropometric, strength and power characteristics of rugby forwards, their body position when scrummaging, and their ability to apply force when scrummaging. Force applied to an instrumented scrum machine was measured for 56 players, both individually and as scrum packs. Measurements of body position for individuals were made by digitizing videotape records of the trials. Forty players subsequently had their anthropometry assessed and completed several strength and power tests. Body mass, each component of somatotype, maximal anaerobic power developed on a cycle ergometer, and isokinetic knee extension strength correlated significantly with individual scrummaging force. A regression model (P < 0.001) including body mass, mesomorphy, maximal anaerobic power and hip angle while in the scrummaging position accounted for 45% of the variance in individual scrummaging force. The packs that produced the largest scrummaging forces were, in general, characterized by a greater pack force to sum of individual force ratio than the packs producing lower forces. Our results emphasize the need for a scrum pack to develop technique and coordination as a unit to maximize scrummaging force.  相似文献   

6.
The aim of this study was to compare cervical spine kinematics in rugby union front row players during machine-based and “live” scrummaging. Cervical spine kinematics was measured via electromagnetic tracking of sensors attached to the head and thorax. Joint angles were extracted from each trial at two time points (“bind” prior to engagement and instant of impact) for comparison between scrummaging conditions. The effect of scrummaging condition on kinematics was evaluated using a mixed effects model and estimations were based on a Bayesian framework. With differences ranging from 38° to 50°, the results show that the cervical spine is consistently more flexed when scrummaging against opponents than against a scrum machine. In contrast, there are little differences in the excursion of lateral-flexion (range 5–8°) and axial rotation (7°) between the two conditions. The findings from this study provide clear information on motion patterns in different scrum formations, and suggest that the current design of scrum machines may not promote the same pattern of movement that occurs in live scrums. The results highlight that findings from previous studies that have investigated kinematics during machine-based scrummaging may not be generalisable to a competitive scrummaging context.  相似文献   

7.
Although the characteristic morphology of rugby forwards playing different positions in the rugby scrum has been well documented, a complete picture of the force characteristics that different players produce has not been evaluated. This is especially true for the movement of the centre of pressure (CoP) elicited during scrummaging in a forward direction. An individual scrummaging ergometer was therefore developed to measure the CoP of an individual scrum action using conventional torque calculations. Calibration of the measurement system revealed measured force errors within 16.6 N of the actual force and errors of less than 3.96 mm for CoP location determination. Thirty-nine club level rugby union players (22 front rows, 11 locks and six back rows) scrummed against the ergometer on an outdoor rugby field. Differences between the three groups were tested using one-way ANOVAs. The maximum force for different players was 2253.6 ± 649.0 N over the entire subject group. There were no differences in the individual compressive force between the groups [front rows: 2404.0 ± 650.3 N; locks: 2185.6 ± 568.9 N; back rows: 1826.9 ± 670.2 N (p = 0.143)]. Individually, front rows started at a higher position than back rows (p = 0.009) and were at a higher vertical position than locks when producing maximum force (p = 0.028). Front rows had lower variation in the CoP (p = 0.044) and less movement to achieve their maximum force (p = 0.020) than locks. Front rows moved less overall than back rows (p = 0.028) during the scrum trial. The design and application of the individual scrum ergometer showed with good limits of agreement that differences in force magnitude and CoP exist within scrummaging players. Practically, the application of this ergometer may assist in the individual optimisation of scrummaging performance.  相似文献   

8.
A rugby scrum’s front row must act uniformly to transfer maximal horizontal force and improve performance. This study investigated the muscle activation patterns of lower extremity muscles in front row forwards during live and machine scrums at professional and amateur levels. Electromyography was collected bilaterally on vastus lateralis, rectus femoris and gastrocnemius muscles of 75 male rugby prop players during live and machine scrums. ANOVAs compared muscle reaction time, rate of change in muscle amplitude and muscle amplitude between groups and conditions. Cross-correlation analysis explored muscle synchronicity. There were significantly greater rates of change in each muscle amplitude in professional players than amateur players. Additionally, there was significantly quicker muscle reaction time in all muscles, and greater amplitude in vastus lateralis and gastrocnemius, during the live scrum vs. machine condition. The professional props produced more synchronised muscle activation than amateur players and all players produced more synchronised muscle activation against the scrum machine vs. live scrummage. The results indicate a higher skill proficiency and muscle synchronicity in professional players. While scrum machine training is ideally suited for functional muscle strengthening during practice, to truly simulate the requirements of the scrum, training should incorporate the live situation as much as possible.  相似文献   

9.
Rugby Union scrumming puts the spine under a high degree of loading. The aim of the current study was to determine how sagittal hip range of motion and quadriceps fatigue influence force output, spinal posture, and activation of the trunk and quadriceps muscles in rugby scrumming. Measures of sagittal hip flexion/extension range of motion were collected from 16 male varsity and club first XV level participants. Sagittal spine motion (electromagnetic motion capture), trunk and quadriceps activation (electromyography), and applied horizontal compressive force (force plate) were measured during individual machine scrumming. Participants performed a 5-trial scrum block involving 5?s of contact with 1–2?min recovery between each trial. They then performed a fatiguing protocol (wall sit to failure) and immediately returned to the scrum machine to perform another five trials. Though there was no significant influence of fatigue on the horizontal compressive force applied during contact (P?=?.83), there was a 52% increase in cervical flexion (P?P?P?相似文献   

10.
The aim of this study was to determine the precision and accuracy of the vertical and anterior–posterior force components of the portable PASCO PS-2142 force plate. Impulse, peak force, and time to peak force were assessed and compared to a gold standard force plate in three different tasks: vertical jump, forward jump, and sprint start. Two healthy male participants performed ten trials for each task, resulting in 60 trials. Data analyses revealed good precision and accuracy for the vertical component of the portable force plate, with relative bias and root mean square (RMS) error values nearly the same in all tasks for the impulse, time to peak force, and peak force parameters. Precision and accuracy of the anterior–posterior component were lower for the impulse and time to peak force, with relative bias and RMS error values nearly the same between tasks. Despite the lower precision and accuracy of the anterior–posterior component of the portable force plate, these errors were systematic, reflecting a good repeatability of the measure. In addition, all variables presented good agreement between the portable and gold standard platforms. Our results provide a good perspective for using the aforementioned portable force plate in sports and clinical biomechanics.  相似文献   

11.
In order to quantify internal forces and articular moments, by the inverse dynamics method, specially at lumbar level, an experimental laboratory apparatus to analyze kinematics and 3D kinetics of rowers was developed. It comprised a 3D motion analysis system, a Type C Concept II ergometer, three force-plates, six axes and two miniature mono-dimensional force transducers. The apparatus was designed for each hand, with two miniature transducers integrated into new steel handles to measure the force developed by each hand. Furthermore, the apparatus was also designed for each foot. Two force platforms were placed under two new foot stretchers to measure force and moment developed by each foot. The ergometer also has a sliding seat under which was placed a miniature force platform. A study of the rowing movement of a regional level competition rower demonstrated the relevance of the data. This study was concerned with the 3D kinetics parameters expressed in the medio-lateral, anterio-posterior and vertical axes. Some obtained data are novel or rarely associated together and enable a better understanding of the rower movement.  相似文献   

12.
The aim of this study was to quantify the movement patterns of various playing positions during professional rugby union match-play, such that the relative importance of aerobic and anaerobic energy pathways to performance could be estimated. Video analysis was conducted of individual players (n=29) from the Otago Highlanders during six "Super 12" representative fixtures. Each movement was coded as one of six speeds of locomotion (standing still, walking, jogging, cruising, sprinting, and utility), three states of non-running intensive exertion (rucking/mauling, tackling, and scrummaging), and three discrete activities (kicking, jumping, passing). The results indicated significant demands on all energy systems in all playing positions, yet implied a greater reliance on anaerobic glycolytic metabolism in forwards, due primarily to their regular involvement in non-running intense activities such as rucking, mauling, scrummaging, and tackling. Positional group comparisons indicated that while the greatest differences existed between forwards and backs, each positional group had its own unique demands. Front row forwards were mostly involved in activities involving gaining/retaining possession, back row forwards tended to play more of a pseudo back-line role, performing less rucking/mauling than front row forwards, yet being more involved in aspects of broken play such as sprinting and tackling. While outside backs tended to specialize in the running aspects of play, inside backs tended to show greater involvement in confrontational aspects of play such as rucking/mauling and tackling. These results suggest that rugby training and fitness testing should be tailored specifically to positional groups rather than simply differentiating between forwards and backs.  相似文献   

13.
以解决橄榄球司克兰技术在教学、训练中量化力量、防止颈部损伤及校正技术动作标准等为目的。运用机械工程设计法、力学试验、设计计算和加工制作,研制了用器械替代用人力的司克兰教学训练辅助器材。试验取得了关键技术参数,并对样机进行了实际应用检验。得出橄榄球队员的体重与推顶力具有二者相关关系和推顶力的置信范围,P<0.05;在1-α=95%的条件下,受力置信范围是可信的。验证了橄榄球司克兰推顶力设备具有技术性能可靠性和对提高橄榄球司克兰教学训练质量具有十分良好的效果。  相似文献   

14.
Abstract

The aim of this study was to quantify the movement patterns of various playing positions during professional rugby union match-play, such that the relative importance of aerobic and anaerobic energy pathways to performance could be estimated. Video analysis was conducted of individual players (n=29) from the Otago Highlanders during six “Super 12” representative fixtures. Each movement was coded as one of six speeds of locomotion (standing still, walking, jogging, cruising, sprinting, and utility), three states of non-running intensive exertion (rucking/mauling, tackling, and scrummaging), and three discrete activities (kicking, jumping, passing). The results indicated significant demands on all energy systems in all playing positions, yet implied a greater reliance on anaerobic glycolytic metabolism in forwards, due primarily to their regular involvement in non-running intense activities such as rucking, mauling, scrummaging, and tackling. Positional group comparisons indicated that while the greatest differences existed between forwards and backs, each positional group had its own unique demands. Front row forwards were mostly involved in activities involving gaining/retaining possession, back row forwards tended to play more of a pseudo back-line role, performing less rucking/mauling than front row forwards, yet being more involved in aspects of broken play such as sprinting and tackling. While outside backs tended to specialize in the running aspects of play, inside backs tended to show greater involvement in confrontational aspects of play such as rucking/mauling and tackling. These results suggest that rugby training and fitness testing should be tailored specifically to positional groups rather than simply differentiating between forwards and backs.  相似文献   

15.
Artificial surfaces are now an established alternative to grass (natural) surfaces in rugby union. Little is known, however, about their potential to reduce injury. This study characterises the spinal kinematics of rugby union hookers during scrummaging on third-generation synthetic (3G) and natural pitches. The spine was sectioned into five segments, with inertial sensors providing three-dimensional kinematic data sampled at 40 Hz/sensor. Twenty-two adult, male community club and university-level hookers were recruited. An equal number were analysed whilst scrummaging on natural or synthetic turf. Players scrummaging on synthetic turf demonstrated less angular velocity in the lower thoracic spine for right and left lateral bending and right rotation. The general reduction in the range of motion and velocities, extrapolated over a prolonged playing career, may mean that the synthetic turf could result in fewer degenerative injuries. It should be noted, however, that this conclusion considers only the scrummaging scenario.  相似文献   

16.
为揭示下肢运动性疲劳对纵跳的动力学特征的影响,22名男性体育教育专业大学生志愿参加了实验。结果表明,随着下肢负荷时间的增加纵跳的垂直方向分力和冲量下降,而左右、前后方向分力和冲量增加,三个方向的力矩随负荷时间的延长而增加。  相似文献   

17.
The purpose of the present study was to investigate the effects of different methods to calculate vertical jump height in men and women. Fifty men and 50 women performed three countermovement vertical jumps for maximal height on a force platform, the highest of which was used in the statistical analyses. The peak displacement attained by the center of mass (COM) during flight was obtained from three different calculations: (1) using the time in the air (TIA), (2) using the vertical velocity of the COM at take-off (TOV), and (3) adding the positive vertical displacement of the COM prior to take-off to the height calculated using TOV (TOV+s). With all calculations, men produced significantly greater jump heights than women (p < 0.05). TIA produced significantly greater jump heights than TOV in men and women, while TOV+s produced significantly greater jump heights than both TIA and TOV in men and women (p < 0.05). Despite these differences, the methods produced consistent results for both men and women. All calculation methods have logical validity, depending upon the definition of jump height used. Therefore, the method used to calculate jump height should be determined by the equipment available to the practitioner while giving consideration to the sources of error inherent in each method. Based upon the present findings, when using a force platform to calculate vertical jump height, practitioners are encouraged to use the TOV method.  相似文献   

18.
Progress in micro-electromechanical systems has turned inertial sensor units (IUs) into a suitable tool for vertical jumping evaluation. In total, 9 men and 8 women were recruited for this study. Three types of vertical jumping tests were evaluated in order to determine if the data provided by an IU placed at the lumbar spine could reliably assess jumping biomechanics and to examine the validity of the IU compared with force plate platform recordings. Robust correlation levels of the IU-based jumping biomechanical evaluation with respect to the force plate across the entire analysed jumping battery were found. In this sense, significant and extremely large correlations were found when raw data of both IU and force plate-derived normalised force–time curves were compared. Furthermore, significant and mainly moderate correlation levels were also found between both instruments when isolated resultant forces’ peak values of predefined jumping phases of each manoeuvre were analysed. However, Bland and Altman graphical representation demonstrated a systematic error in the distribution of the data points within the mean ±1.96 SD intervals. Using IUs, several biomechanical variables such as the resultant force–time curve patterns of the three different vertical jumps analysed were reliably measured.  相似文献   

19.
The aim of this study was to understand how the commonly used climbing-specific grip techniques and hold depths influence the finger force capacities. Ten advanced climbers performed maximal voluntary force on four different hold depths (from 1 to 4 cm) and in two force directions (antero-posterior and vertical) using three grip techniques (slope, half crimp and full crimp). A specially designed platform instrumented with a 6-degrees-of-freedom (DoF) force/torque sensor was used to record force values. Results showed that the maximal vertical forces differed significantly according to the hold depth and the grip technique (ranged from 350.8 N to 575.7 N). The maximal vertical forces increased according to the hold depth but the form of this increase differed depending on grip technique. These results seemed to be more associated with finger-hold contact/interaction than with internal biomechanical factors. Similar results were revealed for antero-posterior forces (ranged from 69.9 N to 138.0 N) but, it was additionally noted that climbers have different hand-forearm posture strategies with slope and crimp grip techniques when applying antero-posterior forces. This point is important as it could influence the body position adopted during climbing according to the chosen grip technique. For trainers and designers, a polynomial regression model was proposed in order to predict the mean maximal force based on hold depth and adopted grip technique.  相似文献   

20.
Abstract

Cinematographic records were taken of 17 males during the performance of the vertical jump under four conditions of weighting; namely: no additional weight, and additions of 6, 12, and 18 pounds. Decreases in maximal angular velocity and increases in range of motion and time of the joint actions of the hip, knee, and ankle were noted with increasing amounts of weight. Significant decreases were obtained in the V/t ratio at the hip and knee joints with increasing amounts of weight. If one assumes a constant available force, these adjustments are consistent with an increase in mass (weight) according to the formula F = m V/t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号