首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

2.
一、选择题 (每小题 6分 ,满分 36分 )1.定义在实数集R上的函数y =f(-x)的反函数是y =f-1(-x) ,则 (   ) .(A)y =f(x)是奇函数(B)y=f(x)是偶函数(C)y=f(x)既是奇函数 ,也是偶函数(D)y =f(x)既不是奇函数 ,也不是偶函数图 12 .二次函数f(x)=ax2 +bx +c的图像如图 1所示 .记N =|a +b +c |+|2a -b|,M =|a -b +c |+|2a +b|.则 (   ) .(A)M >N  (B)M =N(C)M <N  (D)M、N的大小关系不能确定3.在正方体的一个面所在的平面内 ,任意画一条直线 ,则与它异面的正方体的棱的条数是 (   )…  相似文献   

3.
近几年的高考、会考试题都考查到对称性问题 .对称性问题从曲线角度分为曲线自身的对称与两曲线之间的对称 ;从点的角度分为点关于点的对称与点关于直线的对称(曲线关于直线、点对称可转化为点关于直线的对称、点关于点的对称 ) .一、几个结论(1 )点A(x0 ,y0 )关于P(a ,b)对称点A′的坐标为 (2a-x0 ,2b-y0 ) .(2 )点A(x0 ,y0 )关于直线l:ax+by+c=0 (其中|a| =1 ,|b| =1 )对称点A′(x0 ′,y0 ′)的坐标满足x0 ′=-by0 -ca ,y0 ′=-ax0 -cb .(3 )函数 y =f(a+mx)与函数 y=f(b-mx) (a、b、…  相似文献   

4.
在函数的性质中 ,周期性占有特殊地位 .本文给出几个在对称条件下函数周期性的一些判定方法及其应用例举 .结论 1 如果一个函数的图象有两条对称轴x=a与x =b,那么这个函数一定是周期函数 .具体地说 ,若函数 y=f(x) ,对于定义域R上的任何x ,都有 f(x) =f( 2a-x) ,f(x) =f( 2b -x) (a≠b) ,则函数 f(x)是周期函数 ,且 2|a-b|为其一个正周期 .证明 对于任一x∈R ,都有f[2 (b-a) +x]=f( 2b-2a +x)=f( 2a-x) =f(x) ,∴y=f(x)是一个周期函数 ,2|a-b|为其一个正周期 .根据结论 1 ,若函数 f(x…  相似文献   

5.
构造函数法是证不等式的一种重要方法 ,本文谈谈构造函数法证不等式的几种思考途径 .途径一 利用函数的单调性构造一个函数 ,使原不等式 (或经等价变形后 )的左右两边是这个函数在某一个单调区间上的两个值 ,就可以利用函数的单调性证明不等式 .例 1 已知a、b、c∈R ,且a b c =1,求证 :abc 1abc≥ 2 712 7.证明 令 f(x) =x 1x ,取 0 <x1<x2 <1,则f(x2 ) - f(x1) =(x2 -x1) 1x2 - 1x1=(x2 -x1) 1- 1x1x2 <0 ,所以 f(x)在 (0 ,1)上为减函数 .又 0 <abc≤ a b c33=12 7,∴f(abc) ≥ f 12 …  相似文献   

6.
由奇函数、偶函数的图象定理知 :若f( -x) =-f(x) ,则函数f(x)的图象关于原点对称 ;若 f( -x) =f(x) ,则函数 f(x)的图象关于 y轴对称 .下面我们研究此结论的推广情况 .1 若 f(a -x) =-f(a+x) ,则函数f(x)的图象关于点 (a ,0 )对称 ;2 若 f( -x) =2a -f(x) ,则函数f(x)的图象关于点 ( 0 ,a)对称 ;3 若f(a-x) =f(a +x) ,则函数f(x)的图象关于直线x =a对称证明  1 由 f(a-x) =-f(a +x)得 ,函数f(a+x)是奇函数 ,从而函数 f(a+x)的图象关于原点对称 ,由此得函数f(x)的图象关于点 (a …  相似文献   

7.
下面,通过一些具体例子说明函数思想在解题中的运用.  一、比较大小例1 试比较|a+b|1+|a+b|与|a|+|b|1+|a|+|b|的大小.解:对于函数f(x)=x1+x=1-11+x,易知当x∈(-1,+∞)时,其为增函数.而0≤|a+b|≤|a|+|b|,故|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|.注:通常可以利用函数的单调性解决比较大小的问题.二、证明不等式例2 已知实数a、b、c∈(0,1),证明:不等式a(1-b)+b(1-c)+c(1-a)<1总成立.证明:欲证不等式等价于(1-b-c)a+(1-c)(b-1)<0.记f(a)=(1-b-c)a+(1-c)(b-1),故欲证原不等式成立,只需证明a∈…  相似文献   

8.
在闭区间上的二次函数的绝对值不等式的证明有一个通法 :将二次函数的系数用闭区间上的三个函数值 (一般用区间端点和中点的函数值 )来表示 ,然后借助于绝对值不等式来解决 .例 1 设a、b、c∈R ,f(x) =ax2 +bx +c(a≠ 0 ) .若 | f( 0 ) |≤ 1,|f( 1) |≤ 1,|f( - 1) |≤ 1,试证 :对任何x∈ [- 1,1] ,都有 |f(x) |≤ 54 .证明 :因f( 0 ) =c,f( 1) =a +b+c,f( - 1) =a-b +c,故解得a =f( 1) + f( - 1)2 - f( 0 ) ,b =f( 1) - f( - 1)2 ,c=f( 0 ) .∵  |x|≤ 1∴  | f(x) | =|ax2 +bx +c|=f( …  相似文献   

9.
若x2a2 +y2b2 =1,则有不等式a2 +b2 ≥ (x±y) 2 .这个不等式很容易证明 :a2 +b2 =(a2 +b2 ) x2a2 +y2b2=x2 +y2 +b2 x2a2 +a2 y2b2≥x2 +y2 +2xy=(x +y) 2 ,用 -y代y ,得a2 +b2 ≥ (x -y) 2 .由于条件是椭圆的方程 ,所以我们称上面的不等式为椭圆不等式 .这个不等式的应用很广泛 ,特别是用来求“希望杯”数学竞赛中二元函数的最值或值域问题时显得更加简便 .一、求二元函数的最值例 1 已知a ,b∈R且a +b+1=0 ,求(a -2 ) 2 +(b-3 ) 2 的最小值 .解 设 (a-2 ) 2 +(b -3 ) 2 =t,则(a-2 ) 2…  相似文献   

10.
一、选择题 :1.已知函数f(x) =x2 - 2mx +4 +2m的定义域是R ,值域是 [1,+∞ ) ,则实数m的集合为 (   ) .A .{m|- 1≤m≤ 3}  B .{m|1- 5<m <5}C .{- 1,3}  D .{m|m <1或m >3}2 .要使函数 f(x) =ax2 +(a - 6 )x +2对一切正整数x都取正值 ,其充要条件是 (   ) .A .a =3  B .2 <a <18  C .a >2  D .以上都不对3.对每一对实数x ,y,函数 f(x)满足 f(x +y) - f(x) -f( y) =xy +1,且f( 1) =1,那么满足f(n) =n(n≠ 1)的整数n的个数共有 (   )个 .A .0  B .1  C .2  …  相似文献   

11.
不等式中恒成立问题是各类考试中的常见题型,其解法灵活.那么,如何求解呢?下面通过例题加以说明.一、分离参数,转化为求函数的最值例1 设f(x)是定义在(-∞,3]上的减函数,已知f(a2-sinx)≤f(a+1+cos2x)对于x∈R恒成立,求实数a的取值范围.分析:应在定义域和增减性的条件下去掉函数符号f,使a从f中解脱出来.解:原不等式等价于a+1+cos2x≤a2-sinx≤3对x∈R恒成立,即        a2≤3+sinx,a2-a≥1+cos2x+sinx①②对x∈R恒成立.令t(x)=3+sinx,则①对x∈R恒成令s(x)=1+cos2x…  相似文献   

12.
抽象函数是考试中经常考查的问题 考生面对此问题会本能地产生恐惧 其实抽象函数面纱并不神秘 ,只需多留心观察平时学过的函数 ,借助这些基本函数 ,抓住其特征结构 ,打开思维的闸门 ,问题是能够解决的 本文试从特征结构入手 ,探讨某些抽象函数的解题策略 1 f(x+y) =f(x) + f(y)型问题中出现 f(x + y) =f(x) +f( y)这个特征结构 ,联想一次函数及其相应的性质 ,则问题迅速可解 例 1 设f(x)是奇函数 ,对于任意x ,y∈R ,都有 f(x + y) =f(x) + f( y) ,且x >0时 ,f(x)<0 ,f( 1) =- 2 ,试问在 - 3≤x≤ 3时…  相似文献   

13.
运用分母代换法证明不等式举例   总被引:1,自引:1,他引:1  
对于分母是多项式的分式不等式 ,采用将分母进行整体代换后 ,便于应用基本不等式或常见的“( ni=1ai) ( ni=11ai)≥n2 (ai >0 )”结论来证明 .下面分类举例 .1 分子为常数型例 1 若x、y、z∈ (0 ,1) ,求证 :11-x+ y+ 11- y+z+ 11-z+x ≥ 3.证明 设 1-x + y=a ,1- y+z=b ,1-z+x=c,则a >0 ,b>0 ,c>0 ,且a +b+c =3.∵ (a+b +c) (1a + 1b + 1c) ≥ 9,∴ 1a + 1b + 1c ≥ 3.故 11-x+ y+ 11- y+z+ 11-z+x ≥ 3.例 2  (第 19届莫斯科奥林匹克竞赛题 )设任意的实数x、y满足 |x| <1,|…  相似文献   

14.
1 求证 :sin2 0 0 3° >12 ·cos2 0 0 2°。  (不要使用计算器等工具。)2 试求出两条抛物线 y2 =2 5 -6x与x2 =2 5 -8y的所有的交点的坐标。 (不要使用一元四次方程求根公式。)3 试求出所有的有序正整数对 (a ,b) (a≤b) ,使得a能整除b2 +b +1 ,且b能整除a2 +a +1。4 试求出所有的函数 f :R -{0 ,1 }→R -{0 },使得对于任何的满足“x·f(y) ,y -x∈R -{0 ,1 }”的x∈R -{0 },y∈R -{0 ,1 },都有  f(x·f(y) ) =(1 -y)·f(y -x)。5 试求出所有的函数 f :R→R ,使得对于任何的x、y∈…  相似文献   

15.
平均不等式是解决最值问题的常用方法之一 ,但是利用它求最值必须满足“一正、二定、三相等”3个基本条件 .有些最值问题 ,在运用平均不等式时等号不能成立 ,此时 ,可适当引入参数 ,利用待定系数法 ,解决平均不等式中等号不能成立的问题 .下面举例加以说明 .一、f(x) =axm + bxn(a ,b ,m ,n>0 )例 1  (2 0 0 0年上海市高考题 )已知函数f(x) =x2 + 2x+ax ,x∈ [1,+∞ ) ,若a=12 ,求函数 f(x)的最小值 .分析 当a=12 时 ,f(x) =x + 12x+ 2≥ 2 12 + 2 ,当且仅当x =12x,即x =22 时取等号 .但 22<1,不在函数定义…  相似文献   

16.
1 已知x2 y2 +x2 +y2 -4xy -8x -8y + 2 5=0 ,求x、y的值 .2 已知a、b、c都是正实数 ,且a >b.求证 :a2 +c2 -b2 +c2 <a-b.3 已知 2 5a -5b +c =0 (a≠ 0 ) .求证 :b2 ≥ 4ac.4 已知△ABC的三边a、b、c满足不等式a+b +c + 1 7≤ 4a -8+ 6b-3+ 8c-1 ,试判定△ABC的形状 .5 若x1、x2 是方程x2 + 5x -7=0的两个根 ,则 (2x21+ 1 3x1-1 9) (2x22 + 1 3x2 -1 9)的值是.参考答案1 已知等式可变形为 (xy -3) 2 + (x +y) 2-8(x +y) + 1 6 =0 ,即 (xy -3) 2 + (x +y -4 ) 2=0 .∴ x…  相似文献   

17.
请先看下面的例子 :例 1 设函数 y =f(x)定义在R上 ,则函数 y=f( 1 -x)与 y=f( 1 +x)的图象关于 (   )(A)直线 y=0对称(B)直线x=0对称(C)直线 y =1对称(D)直线x=1对称学生往往容易错选D .什么原因呢 ?显然 ,学生将本题混同于下面的问题 :例 2 设 y=f(x)是定义在R上的函数 ,若 f( 1 -x) =f( 1 +x) ,则函数 y =f(x)的图象关于直线对称 .在这类问题上产生混淆的现象还很多 ,为此 ,笔者对这类对称问题剖析如下 ,供参考 .探讨函数图象的这类对称问题 ,首先应分清研究对象 ,是讨论某一个函数图象自身的对称问题…  相似文献   

18.
关于函数y=asintx+bcostx的最值 ,文[1 ] 应用赫尔德 (Holder)不等式给出了如下定理 :定理 函数y=asintx+bcostx ,x∈ (0 ,π2 ) ,a、b为正常数 ,且t ∈R(t≠ 0 ,2 ) ,在x =arctan(ab) 1 2 -t 处取得最值 (a22 -t +b22 -t) 2 -t2 ,其中(1)当t∈ (0 ,2 )时 ,y取得最大值 ;(2 )当t∈ (2 ,+∞ )时 ,y取得最小值 ;(3)当t∈ (-∞ ,0 )时 ,y取得最小值 .本文应用凸函数的性质给出上述定理的另一证明及其推广 .首先介绍凸函数的一个性质 (引理 ) :引理 ①设函数f(u)是定义在区间Ⅰ…  相似文献   

19.
以能力立意是高考数学命题的指导思想 ,在知识网络交汇点处设计试题是高考数学命题的新特点和大方向 .与函数 y =Asin(ωx + φ) +B有关的综合问题正是在这种背景下“闪亮登场” ,频频出现在各级各类考试中 .下面笔者精选出两道典型题目予以分析解答 ,旨在引导同学们熟悉题型特点 ,掌握解题方法 .一、与一般函数的性质交汇例 1 已知A( 2π ,1)和B 5π2 ,1在函数 f(x) =asinx +bcosx +c(a、b、c∈R)的图象上 .若定义在非零实数集上的奇函数 g(x)在 ( 0 ,+∞ )上是增函数 ,且 g( 2 ) =0 ,求当 g[f(x) ]<0且…  相似文献   

20.
第 一 试一、选择题 (每小题 6分 ,共 3 6分 )1.已知x、y是两个不等的正数 ,则A =x2 +y22- x +y2 ,B =x +y2 -xy ,C =xy - 21x + 1y的大小顺序是 (   ) .(A)A >B >C     (B)A >C >B(C)B >A >C  (D)B >C >A2 .函数y =f(x)与y =g(x)有相同的定义域 ,对定义域中任何x ,有f(x) +f(-x) =0 ,g(x)g(-x)= 1,且当x≠ 0时 ,g(x)≠ 1.则F(x) =2f(x)g(x) - 1+f(x)是 (   ) .(A)奇函数  (B)偶函数(C)既是奇函数又是偶函数(D)非奇非偶函数3 .已知a、b为非零常数 .若M =a…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号