首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
漫话核电池     
整整一个世纪以前,原子核放射性的发现,打开了人类进入原子能时代的大门。通过各国科学家的不懈努力,原子能在各个领域得到了广泛应用,核电池就是其中一个方面。世界上的原子核有稳定的和不稳定的两种类型。任何一种不稳定的原子核都会自发地转变为另一种原子核,这种现象称为核衰变。由于衰变过程都伴随着  相似文献   

2.
《中国科学院院刊》2011,(5):577-578
中科院近代物理所原子核理论组研究人员近期研究了超重核衰变能之间存在的关联以及对称能对于超重核Qα值同位旋依赖性的影响,提出了一个描述邻近超重核α衰变能之间的关联和预言超重核Qα值的简单公式:  相似文献   

3.
难解的疑团原子好比万花筒,里面变化多端,其中一种变化叫做β衰变,意思是从某些放射性元素的原子核自动地抛射出β(貝搭)粒子后,轉变为別的元素的原子核。这种β粒子也就是电子或正电子(带正电荷的电子)。原子核里主要是质子和中子,沒有电子和正电子,那么β粒子是怎么出来的呢?原来,中子可以轉化为带正电荷的质子,并放出电子。质子可以轉化为不带电荷的中子,并放出正电子。这种自动轉化就叫衰变,衰变式子写出如下:中子→质子+电子  相似文献   

4.
<正>?江苏张家港读者连苗民、陕西西安读者王淑惠来信说,他们都非常喜欢物理,在看科普书时经常看到粒子衰变,但却不知道为什么有些粒子会衰变、有些粒子却又不会衰变?粒子衰变遵循什么样的规律?我们上期提到,在粒子衰变性的问题上,中子是一种极为特殊的粒子。一个自由的中子可以衰变,但放在一个特定的原子核里,它就变得稳定了。因此,关于中子的衰变问题,我们需要在本文中专门论述。  相似文献   

5.
《中国科学院院刊》1995,10(1):62-63
不稳定原子核(放射性同位素)的衰变纲图,是原子核处于低激发能态下主要物理性质的集中反映,是原子核物理学科的一项基本内容.它也是具有最广泛应用价值的核物理研究,早已渗透到工业、农业、能源、国防、医学、环境、计量乃至天文、考古、地学、生物、化学等许多基础学科领域之中,因而始终是一个富有魅力的研究课题.  相似文献   

6.
原子核的秘密的揭露,使人类掌握了新的無穷尽的能源。第一座原子能电站在苏联的建立,为將这个能源实际利用于工業和农業的和平目的,奠定了基础。原子技术的發展,开辟了把放射性同位素应用到各种全然不同的科学技术部門中去的广闊的可能性。人工取得放射性同位素的方法之一,是在原子核反应堆中用中子来照射。比如,用中子照射普通的天然的磷的时候,部分的磷原子核就和中子結合而变成磷的放射性同位素(磷-32)的原子核。当放射性磷的核衰变的时候,核中的一个中子轉化成質子,同时放射出一个β粒子(帶陰电的电子)。衰变是按照这个方式發生  相似文献   

7.
随着对反物质研究的深入,人们需要迫切知道反质子之间的相互作用力是怎样的,是否与质子之间的作用是对称的。对这个作用力的测量,有助于我们理解反物质原子核的形成机制以及对物质-反物质对称性的理解。为此,我们STAR探测器合作组利用相对论重离子加速器中金核-金核碰撞中产生的丰富的反质子,通过反质子-反质子动量关联函数的测量,并扣除了通过其他粒子衰变过来的次级反质子与其他反粒子关联的污染,精确地构建了反质子-反质子关联函数。然后,结合量子多粒子关联理论,定量提取出反质子-反质子的有效力程和散射长度这两个基本作用参数。研究表明,在实验精度内,反质子间的相互作用与正质子保持一致。反质子-反质子之间的强相互作用存在着吸引,它们可以克服由于同号(负电荷)的反质子-反质子之间的库伦排斥而结合成反物质原子核。这项研究首次实现了对反物质间相互作用力的测量,为进一步研究反原子核的形成和属性奠定了基础。同时为电荷共轭-空间反射-时间反演(CPT)对称性的检验提供了一种新的方式,对人类深刻认识物质世界的构成及其运动规律具有重要意义。  相似文献   

8.
一般认为,粒子物理的黄金时代是上世纪50年代到70年代。在那些年代,物理学家们透彻地研究了亚原子物理,包括结合核子成为原子核的强作用力,以及以p衰变为典型的弱相互作用力。关于弱相互作用,56年中微子第一次被直接探测到,60年代人们发现了第二种中微子,即“型中微子。60年代晚期还发现了太阳中微子的短缺,这是第一次探测到中微子振荡的后果。关于强相互作用,  相似文献   

9.
介绍了一种能够展示核裂变链式反应过程的动态过程的科普仪器——核裂变链式反应的动态演示仪。演示仪以铀235原子核结构为模型,黄色小球代表中子,红色团表示原子核。采用PLC控制气动装置实现中子的撞击、原子核的分裂以及中子的释放,通过灯光效果,进一步增强了演示的趣味性。该项目获得了2008年国家发明专利,并在多个科技馆应用。  相似文献   

10.
在中学课本上的原子结构图中,原子核往往被画成圆形。而实际上,大多数原子核的形状是橄榄球形的。最近,科学家利用同位素质量分离器仪器,研究了两种同位素原子氡220和镭224的原子核,有了更新的发现。镭224原子核是梨形的,一端较窄,而另一端较宽,像个没有把头的梨。而氡220的形状并不固定。此前有物理学家就从对质子和中子的各种组合进行的研究,推测某些原子核可能是非对称形状的梨形,现在终于在设备上观察到了这一罕  相似文献   

11.
我国核天体物理研究群体紧密围绕核天体物理关键科学问题开展了研究,依托兰州重离子加速器、北京串列加速器和国家天文台郭守敬望远镜,结合国际合作,对核天体物理反应直接测量和间接测量、原子核质量和衰变测量、理论计算、核合成网络计算、以及天文观测等关键科学问题开展研究,制定了我国核天体物理中长期发展战略,取得了国际公认的创新性研究成果。研究成果充分展现了核天体物理研究群体的集成效应,催生了锦屏深地核天体物理实验室,较大地促进了核物理与天体物理的深度交叉和融合,加强了国内核天体物理领域实质性的交流与合作,促使我国核天体物理研究进入到国际先进水平。  相似文献   

12.
世界各地     
云母摄影当原子核的碎片掠过涂在塑料薄膜上的照相乳胶层时,就会留下自己的痕迹——径迹。到目前为止,特制的照相底片一直是记录粒子径迹的唯一工具。但是,最近发现,不用感光软片也能“摄”下核衰变。不久前,英国和意大利的科学家发现,核反应产生的中子,可以在云母片上留下径迹。以后,美国科学家也宣布云母片本身能记录飞过的粒子。因此,许多云母片都已记录了千百万年间的天然核衰变。放射性矿物的微粒和尘屑落在云母上,或者宇宙射线穿透云母,都会留下痕迹。云母片必须经过氢氟酸处理  相似文献   

13.
粒子物理是人类研究物质微观基本构成及其相互作用性质的一门科学,其研究成果深化了人类对微观世界的认识。粲物理和τ轻子物理是粒子物理的重要分支,对其辐射衰变、强衰变和弱衰变的系统研究,将会解决或澄清粒子物理中的一些问题,检验和发展粒子物理的标准  相似文献   

14.
射线探宝     
光宇 《世界发明》2003,26(2):6-6
射线又叫电离辐射,是一种能够使物质发生激发和电离作用的物质。包括X射线、放射性物质裂变和衰变时放出的各种辐射、宇宙射线等。这些具有奇异特性的射线在许多领域中都有广泛的应用。  相似文献   

15.
核能利用     
氢弹爆炸核能的释放通常有两种形式,一种是重核的裂变,即一个重原子核(如铀、钚)分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量;另一种是轻核的聚变,即两个轻原子核(如氢的同位素氘)聚合成为一个较重的核,从而释放出巨大的能量。重核裂变能1938年,德国科学家奥托·哈恩和斯特拉斯曼用中子轰击铀原子核,发现了核裂变现象。铀-235是自然界存在的易于发生裂变的惟一核素。当一个中子轰击铀-235原子核时,这个原子核能分裂成两个较轻的原子核,同时产生2到3个中子和β、γ等射线,并放出能量。如果新产生的中子又打中另一…  相似文献   

16.
《发明与创新》2010,(10):56-56
据报道,意大利国家原子物理研究所的科学家表示,他们已经在地球内部很深的地方发现奇怪的反物质粒子。研究这些粒子,有助于科学家更好地了解地球内部的热流是如何对火山和地震等地表活动产生影响的。研究人员认为,正是反物质粒子导致地球内部发生放射性衰变的。  相似文献   

17.
《发明与创新》2004,(10):25
日本独立行政法人理化学研究所8月24日宣布,该研究所的29人国际研究小组有了新的发现,他们发现了用传统物理学理论无法解释的比通常原子核密度大10倍的新原子核。这一新物理现象的发现,打破了物理学中“原子核密度一定不变”的定律,对从密度变化角度揭开质量起源具有重要意义。  相似文献   

18.
野大豆资源丰富,具有极好的加工特性,本文简要对野大豆蛋白国内外研究概况、营养价值和加工研究现状做了综述,进一步了解野大豆蛋白的加工利用价值,为野大豆的开发利用提供参考。  相似文献   

19.
轻介子的辐射衰变是低能强子物理中重要组成部分,通过对辐射衰变过程分析,能够考察轻介子的结构和性质.从有效理论观点看,轻介子的辐射衰变主要包含了光子和强子的相互作用.矢量介子主导模型能够非常成功的处理强子的电磁相互作用.本文在SU(3)对称性下研究了轻介子的辐射衰变,并与最新实验数据进行拟和.最后,给出分析和结论.  相似文献   

20.
中子     
中子是在1930年發見的基本粒子,它所以作“中子”,是因为它不帶电,在電上講是中性的。它的重量是1.00803原子量單位。中子是核的組成成分之一,除了最簡單的原子核——氫核只是由一个質子組成的以外,其余元素的核都含有中子。由於中了不带电,不被原子核的陽电荷所排斥,所以它容易接近原子核,同它发生作用。因此在原子核物理学中,常常用中子打击原子核,来研究原子核的构造、成分和它的变化。中子在原子能事业佔有很重要的地位。因为现在  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号