首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A comparative study of baseball bat performance   总被引:2,自引:2,他引:0  
The results of a comparative study of five aluminum and one wood baseball bats are presented. The study includes an analysis of field data, high-speed laboratory testing, and modal analysis. It is found that field performance is strongly correlated with the ball–bat coefficient of restitution (BBCOR) and only weakly correlated with other parameters of the bat, suggesting that the BBCOR is the primary feature of a bat that determines its field performance. It is further found that the instantaneous rotation axis of the bat at the moment of impact is very close to the knob of the bat and that the rotational velocity varies inversely with the moment of inertia of the bat about the knob. A swing speed formula is derived from the field data and the limits of its validity are discussed. The field and laboratory measurements of the collision efficiency are generally in good agreement, as expected on theoretical grounds. Finally, the BBCOR is strongly correlated with the frequency of the lowest hoop mode of the hollow bats, as predicted by models of the trampoline effect.  相似文献   

2.
Swing trajectory and ground reaction forces (GRF) of 30 collegiate baseball batters hitting a pitched ball were compared between a standard bat, a bat with extra weight about its barrel, and a bat with extra weight in its handle. It was hypothesised that when compared to a standard bat, only a handle-weighted bat would produce equivalent bat kinematics. It was also hypothesised that hitters would not produce equivalent GRFs for each weighted bat, but would maintain equivalent timing when compared to a standard bat. Data were collected utilising a 500 Hz motion capture system and 1,000 Hz force plate system. Data between bats were considered equivalent when the 95% confidence interval of the difference was contained entirely within ±5% of the standard bat mean value. The handle-weighted bat had equivalent kinematics, whereas the barrel-weighted bat did not. Both weighted bats had equivalent peak GRF variables. Neither weighted bat maintained equivalence in the timing of bat kinematics and some peak GRFs. The ability to maintain swing kinematics with a handle-weighted bat may have implications for swing training and warm-up. However, altered timings of kinematics and kinetics require further research to understand the implications on returning to a conventionally weighted bat.  相似文献   

3.
The purpose of this study was to determine if warm-up with baseball bats of different moments of inertia has an effect on swing pattern and bat velocity. Ten experienced baseball players (ages 20-25 years) voluntarily participated in this study. Each participant was required to complete 10 dry swings (5 warm-up and 5 postwarm-up) at maximum effort within 3 different conditions. Post warm-up was always with a standard bat (I = .27 kgm2; 83.8 cm, 9.1 N). Warm-up for Condition 1 was with the standard bat. Condition 2 required participants to warm up with a standard bat plus a 6.1 N lead donut (I = .49 kgm2, 83.8 cm, 15.6 N). Condition 3 required participants to warm up with a hollow plastic bat (I = .08 kgm2; 83.8 cm, 3.34 N). Quantitative and qualitative analyses indicated that following warm-up with the weighted bat (largest moment of inertia), swing pattern was significantly altered, and post warm-up velocity was the lowest of the three conditions.  相似文献   

4.
Abstract

Over the past few years, there has been a significant increase in the performance of softball bats from the Olympics down to the recreational level. It is theorized that the introduction of composite-based material bats has been the largest contributor to the increase in batted-ball performance, which directly corresponds to a decrease in available pitcher reaction time that can lead to an increase in injury potential. To test this theory, a controlled field-test study comparing all of the different bat model types currently available was conducted. The performance of ten bat model types; two composite-based, two titanium-based, two aluminum-based multi-wall, two aluminum-based single-wall and two wood-based bats were measured using 1686 N/0.64 cm (379 lbs/0.25”) compression softballs in order to calculate available pitcher reaction times when using a specific bat model type. Over 1000 Batted-ball velocity measurements were analyzed using two calibrated radar devices and five experienced test subjects. The results of this study indicate that when titanium-based or composite-based softball bat performance results are compared to published safety studies in the sports of softball and baseball, available pitcher reaction times are unsafe, which can lead to a higher injury risk potential. The significance of this research is to provide experimental field-test data on the possible safety risks to pitchers that can be used to reduce the injury potential and promote safety awareness in the sport of softball.  相似文献   

5.
The influence of moment of inertia on baseball/softball bat swing speed   总被引:1,自引:1,他引:0  
The speed at which a player can swing a bat is central to the games of baseball and softball, determining, to a large extent, the hit speed of the ball. Experimental and analytical studies of bat swing speed were conducted with particular emphasis on the influence of bat moment of inertia on swing speed. Two distinct sets of experiments measured the swing speed of colege baseball and fast-pitch softball players using weighted rods and modified bats. The swing targets included flexible targets, balls on a tee and machine pitched balls. Internal mass alterations provided a range of inertial properties. The average measured speeds, from 22 to 31 m s−1, are consistent with previous studies. Bat speed approximately correlates with the moment of inertia of the bat about a vertical axis of rotation through the batter's body, the speed generally decreasing as this moment of inertia increases. The analytical model assumes pure rotation of the batter/bat system about a vertical axis through the batter's body. Aerodynamic drag of the batter's arms and the bat is included in the model. The independent variable is bat moment of inertia about the rotation axis. There is reasonable agreement between the model and the measured speeds. Detailed differences between the two suggest the importance of additional degrees of freedom in determining swing speed.  相似文献   

6.
Hitting a major league fastball, with approximately half a second to react, poses one of the greatest challenges in sports. The ability to hit the ball derives from the dynamics of the bat swing which can be measured using video motion capture. However, doing so necessitates swinging the bat within the confines of a motion capture laboratory, often with considerable time and expense. This paper introduces an inexpensive and highly portable measurement method for use right on the field of play to support player training, coaching, rehabilitation, and player-bat fitting. The method employs a highly miniaturized, wireless MEMS inertial measurement unit (IMU) affixed to the knob of the bat. The IMU incorporates three-axis sensing of bat acceleration and angular velocity with a low-power RF transceiver to transmit this data to a host computer. Analysis of this data yields a near-instantaneous and highly resolved summary of three-dimensional bat dynamics. This paper describes this novel technology for use in baseball and softball, presents example results, and reveals new features of bat motion overlooked in previous studies.  相似文献   

7.
The swing speed of the bat is one of the most important factors affecting the hit-ball speed. Most field studies tend to focus on measuring ball speed, which is easier to measure and quantify than bat speed. For this reason, relatively little data exist describing bat motion in field conditions. The following describes a relatively large swing speed field study involving bats of the same model with nearly constant weight and varying inertia. The study was conducted using right-handed batters on a regulation outdoor field with a live pitcher. Swing speed was measured by tracking markers on the bat with two high-speed video cameras so that the bat markers could be traced in three-dimensional space. The ball motion was tracked using the same high-speed video cameras and a three-dimensional Doppler radar system. Bat swing speed was observed to be proportional to the batter skill level and the normalised swing speed increased with decreasing bat inertia. The bat centre of rotation during impact was close to the knob of the bat. The bats were tested under controlled laboratory conditions using a standardised performance test. The field and laboratory results showed good agreement including the hit-ball speed and the subtle effect of bat inertia on the maximum performance location. The vibrational response of the bats was considered using modal analysis. The maximum performance location was correlated with the node of the first vibrational mode.  相似文献   

8.
New cricket bats need to be ‘knocked in’ prior to use, but just what this process does to the surface fibres of the bat is unknown and unquantified. One quantitative measurement of knock-in is the resultant surface hardness of the bat, and this paper describes knock-in tests to determine the surface hardness following differing durations of knock-in. The design of a cricket bat knock-in machine is first described. This takes the form of a cradle in which a cricket bat can be secured horizontally and then traversed at constant speeds in two mutually perpendicular directions while at the same time being struck with constant force by a cricket ball. The traverses are driven by lead screws, the motors of which can be independently switched on or off. The traverse distance can be varied with adjustable limit switches and relays that reverse the direction of rotation of the lead screws when activated. The cricket ball is attached to a rod that is lifted cyclically by a cam against a coil spring extension, and then allowed to fall under that force to impact on the bat surface. The impact (knocking-in) force was measured by a previously calibrated strain gauge attached to the rod holding the cricket ball. By judicious setting of the limit switches, selected areas of the bat surface were continuously knocked in for periods varying from 1 to 4 hours. After knocking in, the surface hardness was measured in accordance with British Standard 373 using a penetrator designed in accordance with the same standard. Analysis of the load/penetration curves shows an increase in surface hardness with knock duration. Photographs of the cell structure of the surface wood, obtained using a scanning electron microscope, show that under knock-in conditions, the wood cells collapse to form a mesh-like hardened layer which increases in hardness with increase in knock-in duration.  相似文献   

9.
棒球挥击速度的研究   总被引:1,自引:0,他引:1  
应用高速动态分析仪对部分运动员挥击速度现状的解析参数进行了研究.得出从启动──中球的挥击时间:斜碰撞时是在棒速下降时进行的.现要求棒的挥击时间在100ms以内,投手球飞行至本垒前3.4m左右时棒开始启挥.  相似文献   

10.
The primary aim of this study was to compare the rebound characteristics of wooden and composite cricket bats. The rebound characteristics of two 'experimental' bats manufactured from composite material were compared with three English willow bats and one Kashmir willow bat. The bats were tested using a specially designed testing rig, which propelled a 156 g Kookaburra cricket ball at three impact speeds: fast-medium, 67 km x h(-1); fast, 101 km x h(-1); and express, 131 km x h(-1) on to the bats mounted in position so that the ball impacts occurred at the position where the blade of the bats was the thickest. The rebound characteristics of the bats were calculated by measuring the approach and rebound speeds of the ball as it passed through a light beam positioned a short distance away from the point of impact. The statistical software package SAS was used to test for significant differences (p < 0.05) between the average rebound characteristics of the bats. Further, Scheffé's method was used as a post hoc comparison to determine whether differences existed between the composite and willow bats. When the composite and traditional willow bats were compared, the results showed no significant differences between the three average approach speeds, while the composite bats showed significantly smaller rebound speeds and coefficient of restitution at all three approach speeds. Thus, the rebound characteristics of the composite bats were significantly less than the traditionally designed English willow wooden bats and would not enhance performance by allowing the batsman to hit the ball harder, assuming all other factors, such as bat speed, mass distribution and the impact point, were the same for the bats. Further study is required to determine the physical properties of composite and wooden bats to enhance their impact characteristics.  相似文献   

11.
Although technology has now infiltrated and prompted evolution in most mass participation sports, the advances in bat technology in such sports as baseball and cricket have been relatively minor. In this study, we used a simple finite element modelling approach to try to shed new light upon the underlying mechanics of the bat-ball impact, with a view to the future optimization of bat design. The analysis of a flexible bat showed that the point of impact that produced the maximum post-impact ball velocity was a function of the bat's vibrational properties and was not necessarily at the centre of percussion. The details of the analysis agreed well with traditional Hertzian impact theory, and broadly with empirical data. An inspection of the relative modal contributions to the deformations during impact also showed that the position of the node of the first flexure mode was important. In conclusion, considerable importance should be attached to the bat's vibrational properties in future design and analysis.  相似文献   

12.
Although technology has now infiltrated and prompted evolution in most mass participation sports, the advances in bat technology in such sports as baseball and cricket have been relatively minor. In this study, we used a simple finite element modelling approach to try to shed new light upon the underlying mechanics of the bat-ball impact, with a view to the future optimization of bat design. The analysis of a flexible bat showed that the point of impact that produced the maximum post-impact ball velocity was a function of the bat's vibrational properties and was not necessarily at the centre of percussion. The details of the analysis agreed well with traditional Hertzian impact theory, and broadly with empirical data. An inspection of the relative modal contributions to the deformations during impact also showed that the position of the node of the first flexure mode was important. In conclusion, considerable importance should be attached to the bat's vibrational properties in future design and analysis.  相似文献   

13.
中国优秀棒球运动员竞技能力结构模型的研究   总被引:1,自引:0,他引:1  
研究选择了代表中国最优秀棒球运动水平的国家队、省市一级队主力队员123人。经过专家访谈和教练员经验筛选,得到优秀棒球运动员的竞技能力结构组成,在经过对组成中各项指标的测试和统计学处理,最终确定了中国最优秀棒球运动员的竞技能力结构模型。此模型一方面将为优秀棒球运动员运动能力的发展提供训练的目标系统,另一方面为优秀棒球运动员选材指标体系的确立提供理论与实践依据。  相似文献   

14.
Abstract

A controlled, cinematographic study was made of 17 proficient, professional hitters of the Eastern League hitting a baseball effectively, in order to make a qualitative and quantitative analysis of the mechanics of hitting. Angular measurements of the forward-swing bat delineated a sharply increasing rate of velocity as the bat approached the baseball. Responsibility for the generation of the force imparted to the bat was made manifest by the far greater velocity of the hands-and-wrists over the hips, and, similarly, of the hips over the striding foot. Additional analyses were made of the efforts to maintain bodily balance, the judgment time of each hitter, the changing levels of the head, the preparatory movements of the stance, and the extent of arm movement before the follow-through.  相似文献   

15.
Softballs     
There is currently much debate about the safety of the sport of softball. Batted‐ball speed and average pitcher reaction time are factors often used to determine safe performance. Batted‐ball speed is shown to be the most important factor to consider when determining safe play. Average pitcher reaction time is explained and directly correlated to batted‐ball speed. Eleven aluminum multi‐wall, three aluminum single‐wall and two composite softball bats were tested with mid‐compression polyurethane softballs averaging 1721 ±62 N/6.4 mm to represent the relative bat‐ball performance for the sport of slow‐pitch softball. Nine men and six women were chosen for this study out of a test group of over three hundred slowpitch softball players. On average, aluminum bat performance results were within the recommended safety limits established by the national softball associations. However, when composite bats were used, their performance results exceeded the recommended safety limits which can pose a significant safety risk. Using aluminum softball bats, batted‐ball speeds ranged from 80 to 145 km.h‐1. Using composite softball bats, batted‐ball speeds ranged from 146 to 161 km.h‐1. The scientific relevance of this study is to provide performance information that can lead to injury prevention in the sport of softball.  相似文献   

16.
Describing the plastic deformation of aluminium softball bats   总被引:1,自引:1,他引:0  
Hollow aluminium bats were introduced over 30 years ago to provide improved durability over wooden bats. Since their introduction, however, interest in hollow bats has focused almost exclusively around their hitting performance. The aim of this study was to take advantage of the progress that has been made in predicting bat performance using finite elements and apply it to describe bat durability. Accordingly, the plastic deformation from a ball impact of a single-wall aluminum bat was numerically modelled. The bat deformation from the finite-element analysis was then compared with experiment using a high-speed bat test machine. The ball was modelled as an isotropic, homogeneous, viscoelastic sphere. The viscoelastic parameters of the ball model were found from instrumented, high-speed, rigid-wall ball impacts. The rigid-wall ball impacts were modelled numerically and showed good agreement with the experimentally obtained response. The strain response of the combined bat-ball model was verified with a strain-gauged bat at intermediate ball impact speeds in the elastic range. The strain response of the bat-ball model exhibited positive correlation with the experimental measurements. High-speed bat-ball impacts were performed experimentally and simulated numerically at increasing impact speeds which induced correspondingly increased dent sizes in the bat. The plastic deformation from the numerical model found good agreement with experiment provided the aluminium work hardening and strain rate effects were appropriately described. The inclusion of strain rate effects was shown to have a significant effect on the bat deformations produced in the finite-element simulations. They also helped explain the existence of high bat stresses found in many performance models.  相似文献   

17.
Bat/ball contact produces visual (the ball leaving the bat), auditory ( the “crack” of the bat), and tactile (bat vibration) feedback about the success of the swing. We used a batting simulation to investigate how college baseball players use visual, tactile, and auditory feedback. In Experiment 1, swing accuracy (i.e., the lateral separation between the point of contact and “sweet spot”) was compared for no feedback (N), visual alone, auditory alone, and tactile alone. Swings were more accurate for all single-modality combinations as compared to no feedback, and visual produced the greatest accuracy. In Experiment 2, the congruency between visual, tactile, and auditory was varied so that in some trials, the different modalities indicated that the simulated ball contacted the bat at different points. Results indicated that batters combined information but gave more weight to visual. Batting training manuals, which typically only discuss visual cues, should emphasize the importance of auditory and tactile feedback in baseball batting.  相似文献   

18.
2008年全国女子垒球锦标赛技术统计与分析   总被引:1,自引:0,他引:1  
运用统计法对获得2008年全国女子垒球锦标赛前8名队伍的投手、防守和击球技术进行对比研究,结果表明:近几年我国女子垒球击球技术水平及防守能力逐步提高,各省市队伍水平差距明显缩小;投手投球能力虽有较大提高,但有特点的尖子投手不多。  相似文献   

19.
There is currently much debate about the safety of the sport of softball. Batted-ball speed and average pitcher reaction time are factors often used to determine safe performance. Batted-ball speed is shown to be the most important factor to consider when determining safe play. Average pitcher reaction time is explained and directly correlated to batted-ball speed. Eleven aluminum multi-wall, three aluminum single-wall and two composite softball bats were tested with mid-compression polyurethane softballs averaging 1721+/-62 N/6.4 mm to represent the relative bat-ball performance for the sport of slowpitch softball. Nine men and six women were chosen for this study out of a test group of over three hundred slowpitch softball players. On average, aluminum bat performance results were within the recommended safety limits established by the national softball associations. However, when composite bats were used, their performance results exceeded the recommended safety limits which can pose a significant safety risk. Using aluminum softball bats, batted-ball speeds ranged from 80 to 145km x h(-1) Using composite softball bats, batted-ball speeds ranged from 146 to 161 km x h(-1). The scientific relevance of this study is to provide performance information that can lead to injury prevention in the sport of softball.  相似文献   

20.
The sweet spot of a cricket bat for low speed impacts   总被引:2,自引:1,他引:1  
The impact location of a cricket ball on a cricket bat has a large influence on the resulting rebound velocity of the ball. To measure this, a cricket bat was swung in a pendulum motion towards a cricket ball suspended in space. The position of the ball was modified so that it impacted the bat at 24 different positions on the face of the bat. This included six positions longitudinally and four positions laterally. The speed of the bat and each rebound were measured by a radar gun so that the apparent coefficient of restitution (ACOR) could be calculated. Impacts occurring centrally and 1?cm either side of the midline produced significantly higher rebound speeds and ACOR??s than impacts occurring 2 and 3cm off centre (p?<?0.01). Impacts occurring 15?C20?cm from the base of the bat produced the highest rebound speeds (p?<?0.01) and impacts occurring 20?C30?cm from the base of the bat produced the highest ACOR values. Implications for higher speed impacts and game scenarios are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号