首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
勾股定理及其逆定理在各类考试中高频出现,根据近几年中考中出现的热点题型举几例,以飨读者. 一、折叠问题: 例1 如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C’点,那么△ADC’的面积是____. 解析:在Rt△ABC中,∠C =90°,BC=6cm,AC=8cm,利用勾股定理计算AB =10cm,由折叠知,DC=DC’,△BCD与△ABD面积比为6∶10,而这两个三角形面积和为三角形ABC的面积为1/2×8×6 =24,因此△BCD的面积为9cm2与△ABD面积为15cm2,由折叠可以得到△ADC’为9cm2,所以,△ADC’的面积是15-9 =6cm2  相似文献   

2.
译文:如图所示,正方形 WXYZ 的面积是25平方厘米,四个小正方形的边长为1厘米.在△ABC 中,AB=AC,当△ABC 沿 BC 边折叠时,A 点与正方形WXYZ 的中心 O 重合,求△ABC 的面积.  相似文献   

3.
直角三角形的直角边a、b的平方和等于斜边c的平方,即a2+b2=c2,这就是我们熟知的勾股定理,它揭示了直角三角形三边之间的数量关系.灵活巧用它,可使几何问题的解决变得简捷.例1如图1,已知AB⊥CD,△ABD、△BCE都是等腰直角三角形,CD=8,BE=3,则AC的长为()A.8B.5C.3D.&!34(2004年湖北省初中数学竞赛试题)解:依题意,AB=DB,BC=BE.∵BE=3,CD=8,∴BC=3,DB=5,AB=5,∵∠ABC=90°,∴AB2+BC2=AC2∴AC=!AB2+BC2&=&!34.例2如图2,AC=10,BC=17,CD⊥AB于点D,CD=8,求△ABC的面积.(2002年北京市初二数学竞赛试题)解:在△ABC中,∵CD…  相似文献   

4.
题目:在ABC中,已知AB=2a,∠A=30°,CD是AB边的中线.若将ABC沿CD对折起来,折叠后2个小ACD、BCD重叠部分的面积恰好等于折叠前ABC的面积的41.有如下结论:①AC边的长可以等于a;②折叠前ABC的面积可以等于23a2;③折叠后,以A、B′为端点的线段AB′与中线CD平行且相等.其中,正确结论的个数是()个.(A)0(B)1(C)2(D)3(2003,天津市中考题)试题提供的答案为(D).某同学就结论①提出质疑,其理由是:图1如图1所示,因为SCDE=41SABC,ACD和BCD等底同高,即SCDE=21SACD,而ACD和CDE所在AC边上的高相等,…  相似文献   

5.
初中几何第一册第225页第8题: 在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm。①求△ABC的面积;②求AB;③求高CD。要求高CD,一般的解法是先求出面积:S_(△ABC),再用勾股定理求斜边AB,然后利用面积相等的关系求出斜边上的高CD,如果不先求出面积和斜边上的长,能否直接求出斜边上的高呢?  相似文献   

6.
三角形的面积 :S=底×高 ÷ 2 .应用面积关系图 1求解 ,有时可使解题简章明了 .1 利用面积的不变性解题例 1 如图 1,在Rt△ABC中 ,∠C =90° ,AC =4 ,BC =3,CD ⊥AB于D ,求CD .解析 在Rt△ABC中 ,由勾股定理得 ,AB =5,而S△ABC =12 BC·AC =12 AB·CD ,即BC·AC =AB·CD ,故CD =BC·ACAB =2 .4 .结论 1 直角三角形斜边上的高等于两条直角边的积除以斜边的商 .例 2  (《几何》第二册第 2 4 8页B组第 2题 )如图 2 ,矩形ABCD中 ,AB =a ,BC =b ,M是BC的中点 ,DE ⊥AM ,E是垂足 ,求证DE =2ab4a2 +b2 .解析 根…  相似文献   

7.
一、填空题1 如图 1 ,已知AB =CD ,AC=BD (1 )图中全等的三角形有    对 ,它们分别是                 .(2 )求证 :OB =OC .分析  要证OB=OC ,只要证△    ≌△    ,要证△   ≌△    ,只需要再有条件∠     =∠     (或∠     =∠     ) .2 如图 2 ,△ABC中 ,AB =AC ,∠BAC=40°.CD是高线 ,则∠BCD =    °.3 如图 3 ,△ABC中 ,∠ACB=90°,∠A =3 0°,AB =8cm ,CD ⊥AB于点D .则BD =    cm ,AD =    cm ,CD =    cm .图 44 如图 4,AD是△ABC…  相似文献   

8.
题目已知:在△ABC 中,AB=AC,D 是 BC 边上一点.求证:AB~2=AD~2+BD·CD.思路分析1:因为 BD、CD 在同一边上,从而考虑相交弦定理,于是作△ABC 的外接圆进行论证.证法1:作△ABC 的外接圆 O,延长AD 交⊙O于 E,连结 BE(如图1),∵AB=AC,∴∠1=∠E.∴△ABD∽△AEB,∴AB~2=AD·AE=AD·(AD+DE)=AD~2+AD·DE.  相似文献   

9.
<正>我们在解(证)几何问题时,常常可利用轴对称性质构造出一个轴对称图形,这样能使解题过程更加简捷.下面举例说明.例1如图1,△ABC中,∠BAC=60°,AB=2AC,D是△ABC内一点,满足AD=3(1/2),BD=5,CD=2,求△ABC的面积.分析把△ACD、△CDB、△ADB分别AD、CB、AB作轴对称变换,把分散的线段,集  相似文献   

10.
几何面积计算题是数学竞赛中的热点问题之一 .由于初一年级同学掌握的几何知识较少 ,解这类问题的难度较大 .下面我们先给出关于等高三角形或共底三角形面积比的两个性质 ,我们将看到 ,恰当地运用这两个性质建立方程或方程组 ,这类问题也不难解决 .性质 1 如图 1,△ ABD、△ ACD与△ ABC存在公共高 AH ,则由S△ =12 ×底×高 ,有S△ AB D∶ S△ ACD =BD∶ CD;S△ AB D∶ S△ AB C=BD∶ BC;S△ AC D∶ S△ A BC =CD∶ BC.这个性质可简述为等高三角形面积比等于底边的比 .图 1图 2性质 2 如图 2 ,在△ ABC中 ,点 D为 …  相似文献   

11.
设点 D 是△ABC 的 BC 边上一点,且满足 AB BD=AC CD,则称 D 是△ABC的周界中点,在边 AB、AC 上也可以找到具有类似性质的点E、F,我们把△DEF 称为△ABC 的周界中点三角形.关于△DEF 与△ABC 的面积关系,有下述重要结论.  相似文献   

12.
华明忠 《中学生电脑》2007,(1):I0010-I0011
现在我们先给出射影定理的一个推论:直角三角形两条直角边平方的比等于它们在斜边上的射影的比。已知:如图(1),在△ABC中,∠ACB=90°,CD⊥AB于D,求证:AC2BC2=ABDD。证明:在△ABC中,∠ACB=90°,CD⊥AB,∴△ADC∽△ACB,△BDC∽△BCA,∴ACAB=AACD,BACB=BBCD,即AC2=AB×AD……①,BC  相似文献   

13.
<正>1试题呈现与特点1.1试题呈现(2018年苏州市中考题第27题)问题1:如图1,在△ABC中,AB=4,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S'.  相似文献   

14.
C 三角 如图 (1), CD是△ ABC的形形状;延拓高,当点 C在 CD上运动时,易得如下结论: AC2+ BC2=AB2 Rt△ ABC. (1) AC2+ BC2>AB2锐角 △ ABC. (2) AC2+ BC2 AC2=AD· AB或 BC2=BD· AB或 CD2=BD· AD Rt△ ABC.(4) AC2>AD· AB或 BC2>BD· AB或 CD2>BD· AD 锐角△ ABC.(5) AC2 我们称 (1)(2)(3)为勾股式,称 (4)(5)(6)为射影式 .利用勾股式和射影式判断三角形的形状,十分方便 . 例 1、已知三角 解: ∵ 42+ 52>62形三边长为 4、 5、 6, ∴它是锐角三角形 .则此三角形为一一 例 2、…  相似文献   

15.
一、填空题 1、如果7:9=(3-x):2x,则x=___. 2、己知点D、E、F分别在△ABC的边AB、AC和BC上,且DE∥BC,EF∥AB,AD:BD=2:3,BC=20cm,则BF=__. 3、如图,△ABC中,DE∥AC,则AB:BD=__. 4、Rt△ABC 中,CD是斜边上的高, AC/BC=2/3,则AD/DB=__.  相似文献   

16.
三角形是平面几何中最基础、最常见的一种图形 ,在有关几何的学习中 ,我们常把图中的三角形作为分析的基本单位 ,用三角形面积公式妙解几何题。一、利用同一三角形面积的两个不同表达式图 1例 1 如图 1 ,CD、AE分别是的边AB、BC上的高 ,且CD =4、AE =8、BC =6 ,求AB的长。分析 :求出△ABC的面积 ,此题便很容易得解。因为△ABC的面积可以由AB及AB边上的高和BC及BC边上的高得到两个不同的表达式 ,从而得到只含有未知数AB的相等关系。解 :△ABC的面积可表示为 :12 ·AB·CD或 12 ·BC·AE即12 ·AB·CD =12 ·BC·AEAB …  相似文献   

17.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

18.
<正>面积类的探究题,是中考题目中的一大类,往往需要运用等积的思想解决.例如:转化成等底等高的三角形、利用平行线中的等积等解决问题.一、问题再现题目如图1,△ABC中,AF是BC边上的中线,△ABF与△ACF等底同高,求证:S△ABF=S△ACF=1/2S△ABC.二、问题解决问题1:如图2,△ABC中,CD是AB边上的中线,BE是  相似文献   

19.
题目:如图1在△ABC中,DE∥BC分别交AB、AC于D、E两点,过点E作EF∥AB交BC于点F,请按图示的数据计算.(1)求平行四边形DBEF的面积S,(2)求△EFC的面积S1,(3)求△ADE的面积S2,(4)发现的规律是什么?解:(1)S=BF×3=2×3=6.(2)S1=12CF×3=12×6×3=9.(3)因为:DE∥BC,EF∥AB.所以四边形DBFE是平行四边形所以DE=BF=2,所以∠ADE=∠ABC.因为∠A=∠A,所以△ADE~△ABC.  相似文献   

20.
首先介绍一个有关的常用图形:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.由相似三角形易得CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.练习1.在正方形ABCD中,AE=1/4AD,E在AD上.G是AB的中点,GF⊥EC,垂足为F.求证:GF2=CF·EF.(提示:连接EG,CG.通过证△AEG(?)△BGC,得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号