首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Our purpose was to compare the effect of a periodized preparation consisting of power endurance training and high-intensity power training on the contractile properties of the quadriceps muscle and functional performances in well trained male sprinters (n = 7). After 4 weeks of high-intensity power training, 60-m sprint running time improved by an average of 1.83% (SD = 0.96; p < .05). This improvement was inversely related to an increase in maximal voluntary contraction torque (r = -.89, p < .05) and poorly correlated with changes in the contractile kinetics of the quadriceps muscle (r range from .36 to -.46). These findings suggest that sprint performance is poorly predicted by muscle intrinsic properties and that a neural adaptation appears to explain most of the observed functional adaptations.  相似文献   

2.
The effects of strength training of the quadriceps on peak power output during isokinetic cycling has been investigated in group of 17 young healthy volunteers. Subjects trained by lifting near-maximal loads on a leg extension machine for 12 weeks. Measurements of maximal voluntary isometric force were made at 2-3 week intervals and a continual record was kept of the weights lifted in training. Peak power output was measured at 110 rev min-1 and at either 70 or 80 rev min-1 before and after the 12 week training period. Measurements of maximum oxygen uptake (VO2max) were made on 12 subjects before and after training. The greatest change was in the weights lifted in training which increased by 160-200%. This was accompanied by a much smaller increase in maximum isometric force (3-20%). There was no significant change in peak power output at either speed. The VO2max remained unchanged with training. The role of task specificity in training is discussed in relation to training regimes for power athletes and for rehabilitation of patients with muscle weakness.  相似文献   

3.
The effects of strength training of the quadriceps on peak power output during isokinetic cycling has been investigated in a group of 17 young healthy volunteers. Subjects trained by lifting near‐maximal loads on a leg extension machine for 12 weeks. Measurements of maximal voluntary isometric force were made at 2–3 week intervals and a continual record was kept of the weights lifted in training. Peak power output was measured at 110 rev min–1 and at either 70 or 80 rev min–1 before and after the 12 week training period. Measurements of maximum oxygen uptake (VO2max) were made on 12 subjects before and after training. The greatest change was in the weights lifted in training which increased by 160–200%. This was accompanied by a much smaller increase in maximum isometric force (3–20%). There was no significant change in peak power output at either speed. The VO2max remained unchanged with training. The role of task specificity in training is discussed in relation to training regimes for power athletes and for rehabilitation of patients with muscle weakness.  相似文献   

4.
‘A tribute to Dr J. Rogge’ aims to systematically review muscle activity and muscle fatigue during sustained submaximal quasi-isometric knee extension exercise (hiking) related to Olympic dinghy sailing as a tribute to Dr Rogge’s merits in the world of sports. Dr Jacques Rogge is not only the former President of the International Olympic Committee, he was also an orthopaedic surgeon and a keen sailor, competing at three Olympic Games. In 1972, in fulfilment of the requirements for the degree of Master in Sports Medicine, he was the first who studied a sailors’ muscle activity by means of invasive needle electromyography (EMG) during a specific sailing technique (hiking) on a self-constructed sailing ergometer. Hiking is a bilateral and multi-joint submaximal quasi-isometric movement which dinghy sailors use to optimize boat speed and to prevent the boat from capsizing. Large stresses are generated in the anterior muscles that cross the knee and hip joint, mainly employing the quadriceps at an intensity of 30–40% maximal voluntary contraction (MVC), sometimes exceeding 100% MVC. Better sailing level is partially determined by a lower rate of neuromuscular fatigue during hiking and for ≈60% predicted by a higher maximal isometric quadriceps strength. Although useful in exercise testing, prediction of hiking endurance capacity based on the changes in surface EMG in thigh and trunk muscles during a hiking maintenance task is not reliable. This could probably be explained by the varying exercise intensity and joint angles, and the great number of muscles and joints involved in hiking.

Highlights

  • Dr Jacques Rogge, former president of the International Olympic Committee and Olympic Finn sailor, was the first to study muscle activity during sailing using invasive needle EMG to obtain his Master degree in Sports Medicine at the Ghent University.

  • Hiking is a critical bilateral and multi-joint movement during dinghy racing, accounting for >60% of the total upwind leg time. Hiking generates large stresses in the anterior muscles that cross the knee and hip joint.

  • Hiking is considered as a quasi-isometric bilateral knee extension exercise. Muscle activity measurements during sailing, recorded by means of EMG, show a mean contraction intensity of 30-40% maximal voluntary contraction with peaks exceeding 100%.

  • Hiking performance is strongly related to the development of neuromuscular fatigue in the quadriceps muscle. Since maximal strength is an important determinant of neuromuscular fatigue during hiking, combined strength and endurance training should be incorporated in the training program of dinghy sailors.

  相似文献   

5.
The aim of this study was to determine whether there is an effect of time of day on the adaptation to strength training at maximal effort. Fourteen participants took part in this experiment. Their peak anaerobic power (Wingate anaerobic test) and peak knee extension torque at six angular velocities (1.05, 2.10, 3.14, 4.19, 5.24 and 6.29 rad · s -1 ) were recorded in the morning (between 07:00 and 08:00 h) and in the evening (between 17:00 and 18:00 h) just before and 2 weeks after a 6 week course of regular training. Seven of them trained only in the morning and seven only in the evening. Multivariate analysis of variance revealed a significant group 2 pre-/post-training 2 time of day interaction effect for peak torque and peak anaerobic power. Before training, in both groups, peak torque and peak anaerobic power were significantly higher in the evening than in the morning. After training, there was no significant difference in peak torque and peak anaerobic power between the morning and the evening for the morning training group. In contrast, in the evening training group, peak torque and peak anaerobic power were higher in the evening than in the morning. As a result of training, both peak torque and peak anaerobic power increased from their initial values as expected. The morning training group improved their peak anaerobic power significantly in the morning and in the evening, the absolute increase being larger in the morning than in the evening. The evening training group did not improve their peak anaerobic power in the morning, whereas it improved significantly in the evening. Although peak torque was significantly improved by training in the morning and evening in both groups, the absolute increase was greater in the morning than in the evening in the morning training group, whereas the opposite was the case for the evening training group. These results suggest that training twice a week at a specific hour increases the peak torque and the peak anaerobic power specifically at this hour and demonstrates that there is a temporal specificity to strength training.  相似文献   

6.
The aim of this study was to determine whether there is an effect of time of day on the adaptation to strength training at maximal effort. Fourteen participants took part in this experiment. Their peak anaerobic power (Wingate anaerobic test) and peak knee extension torque at six angular velocities (1.05, 2.10, 3.14, 4.19, 5.24 and 6.29 rad x s(-1)) were recorded in the morning (between 07:00 and 08:00 h) and in the evening (between 17:00 and 18:00 h) just before and 2 weeks after a 6 week course of regular training. Seven of them trained only in the morning and seven only in the evening. Multivariate analysis of variance revealed a significant group x pre-/post-training x time of day interaction effect for peak torque and peak anaerobic power. Before training, in both groups, peak torque and peak anaerobic power were significantly higher in the evening than in the morning. After training, there was no significant difference in peak torque and peak anaerobic power between the morning and the evening for the morning training group. In contrast, in the evening training group, peak torque and peak anaerobic power were higher in the evening than in the morning. As a result of training, both peak torque and peak anaerobic power increased from their initial values as expected. The morning training group improved their peak anaerobic power significantly in the morning and in the evening, the absolute increase being larger in the morning than in the evening. The evening training group did not improve their peak anaerobic power in the morning, whereas it improved significantly in the evening. Although peak torque was significantly improved by training in the morning and evening in both groups, the absolute increase was greater in the morning than in the evening in the morning training group, whereas the opposite was the case for the evening training group. These results suggest that training twice a week at a specific hour increases the peak torque and the peak anaerobic power specifically at this hour and demonstrates that there is a temporal specificity to strength training.  相似文献   

7.
A common anterior cruciate ligament (ACL) injury situation in alpine ski racing is landing back-weighted after a jump. Simulated back-weighted landing situations showed higher ACL-injury risk for increasing ski boot rear stiffness (SBRS) without considering muscles. It is well known that muscle forces affect ACL tensile forces during landing. The purpose of this study is to investigate the effect of different SBRS on the maximal ACL tensile forces during injury prone landings considering muscle forces by a two-dimensional musculoskeletal simulation model. Injury prone situations for ACL-injuries were generated by the musculoskeletal simulation model using measured kinematics of a non-injury situation and the method of Monte Carlo simulation. Subsequently, the SBRS was varied for injury prone landings. The maximal ACL tensile forces and contributing factors to the ACL forces were compared for the different SBRS. In the injury prone landings the maximal ACL tensile forces increased with increasing SBRS. It was found that the higher maximal ACL force was caused by higher forces acting on the tibia by the boot and by higher quadriceps muscle forces both due to the higher SBRS. Practical experience suggested that the reduction of SBRS is not accepted by ski racers due to performance reasons. Thus, preventive measures may concentrate on the reduction of the quadriceps muscle force during impact.  相似文献   

8.
Abstract

Congestive heart failure (CHF) patients experience reduced muscle fatigue resistance and exercise capacity. The aim of this study was to assess whether skeletal muscle in CHF patients has a normal training response compared to healthy subjects. We compared the effect of one-legged knee extensor (1-KE) endurance training in CHF patients (n=10), patients with coronary artery disease (CAD, n=9) and healthy subjects (n=13). The training response was evaluated by comparing trained leg and control leg after the training period. The fall in peak torque during 75 maximal 1-KE isokinetic contractions revealed that CHF patients were less fatigue resistant than healthy subjects in the control leg, but not in the trained leg. Peak power and peak oxygen uptake during dynamic 1-KE exercise was ~10–16% higher in trained leg than control leg. This training response was not significant different between groups. Muscle biopsies of vastus lateralis showed that fibre type composition was not different between trained leg and control leg. Capillary density was 6.5% higher in trained leg than control leg when all groups were pooled. In conclusion, the more fatigable skeletal muscle of CHF patients responds equally to endurance training compared to skeletal muscle of CAD patients and healthy subjects.  相似文献   

9.
Strength training with isometric contractions produces large but highly angle-specific adaptations. To contrast the contractile mode of isometric versus dynamic training, but diminish the strong angle specificity effect, we compared the strength gains produced by isometric training at four joint angles with conventional dynamic training. Thirty-three recreationally active healthy males aged 18 - 30 years completed 9 weeks of strength training of the quadriceps muscle group three times per week. An intra-individual design was adopted: one leg performed purely isometric training at each of four joint angles (isometrically trained leg); the other leg performed conventional dynamic training, lifting and lowering (dynamically trained leg). Both legs trained at similar relative loads for the same duration. The quadriceps strength of each leg was measured isometrically (at four angles) and isokinetically (at three velocities) pre and post training. After 9 weeks of training, the increase in isokinetic strength was similar in both legs (pooled data from three velocities: dynamically trained leg, 10.7%; isometrically trained leg, 10.5%). Isometric strength increases were significantly greater for the isometrically trained leg (pooled data from four angles: dynamically trained leg, 13.1%; isometrically trained leg, 18.0%). This may have been due to the greater absolute torque involved with isometric training or a residual angle specificity effect despite the isometric training being divided over four angles.  相似文献   

10.
Strength training with isometric contractions produces large but highly angle-specific adaptations. To contrast the contractile mode of isometric versus dynamic training, but diminish the strong angle specificity effect, we compared the strength gains produced by isometric training at four joint angles with conventional dynamic training. Thirty-three recreationally active healthy males aged 18?–?30 years completed 9 weeks of strength training of the quadriceps muscle group three times per week. An intra-individual design was adopted: one leg performed purely isometric training at each of four joint angles (isometrically trained leg); the other leg performed conventional dynamic training, lifting and lowering (dynamically trained leg). Both legs trained at similar relative loads for the same duration. The quadriceps strength of each leg was measured isometrically (at four angles) and isokinetically (at three velocities) pre and post training. After 9 weeks of training, the increase in isokinetic strength was similar in both legs (pooled data from three velocities: dynamically trained leg, 10.7%; isometrically trained leg, 10.5%). Isometric strength increases were significantly greater for the isometrically trained leg (pooled data from four angles: dynamically trained leg, 13.1%; isometrically trained leg, 18.0%). This may have been due to the greater absolute torque involved with isometric training or a residual angle specificity effect despite the isometric training being divided over four angles.  相似文献   

11.
This study investigates the physiological responses to upwind sailing on a laser emulation ergometer and analyses the components of the physical profile that determine the physiological responses related to sailing level. Ten male high-level laser sailors performed an upwind sailing test, incremental cycling test and quadriceps strength test. During the upwind sailing test, heart rate (HR), oxygen uptake, ventilation, respiratory exchange ratio, rating of perceived exertion (RPE) and lactate concentration were measured, combined with near-infrared spectroscopy (NIRS) and electromyography (EMG) registration of the M. Vastus lateralis. Repeated measures ANOVA showed for the cardio-respiratory, metabolic and muscles responses (mean power frequency [MPF], root mean square [RMS], deoxy[Hb+Mb]) during the upwind sailing test an initial significant increase followed by a stabilisation, despite a constant increase in RPE. Stepwise regression analysis showed that better sailing level was for 46.5% predicted by lower MPF decrease. Lower MPF decrease was for 57.8% predicted by a higher maximal isometric quadriceps strength. In conclusion, this study indicates that higher sailing level was mainly determined by a lower rate of neuromuscular fatigue during the upwind sailing test (as indicated by MPF decrease). Additionally, the level of neuromuscular fatigue was mainly determined by higher maximal isometric quadriceps strength stressing the importance of resistance training in the planning of training.  相似文献   

12.
The aim of this study was to evaluate the influence of dry-land inertial training (IT) on muscle force, muscle power, and swimming performance. Fourteen young, national-level, competitive swimmers were randomly divided into IT and control (C) groups. The experiment lasted four weeks, during which time both groups underwent their regular swimming training. In addition, the IT group underwent IT using the Inertial Training Measurement System (ITMS) three times per week. The muscle groups involved during the upsweep phase of the arm stroke in front crawl and butterfly stroke were trained. Before and after training, muscle force and power were measured under IT conditions. Simultaneously with the biomechanical measurements on the ITMS, the electrical activity of the triceps brachii was registered. After four weeks of training, a 12.8% increase in the muscle force and 14.2% increase in the muscle power (p?<?.05) were noted in the IT group. Moreover, electromyography amplitude of triceps brachii recorded during strength measurements increased by 22.7% in the IT group. Moreover, swimming velocity in the 100?m butterfly and 50?m freestyle improved significantly following the four weeks of dry-land IT (?1.86% and ?0.76%, respectively). Changes in the C group were trivial. Moreover, values of force and power registered during the ITMS test correlated negatively with the 100?m butterfly and 50?m freestyle swimming times (r value ranged from ?.80 to ?.91). These results suggest that IT can be useful in swimming practice.  相似文献   

13.
少年男子篮球运动员一年训练前后身体机能变化的研究   总被引:3,自引:0,他引:3  
研究少年男子篮球运动员一年训练前后握力、无氧功率、最大摄氧量、血红蛋白、血清睾酮、免疫球蛋白等机能指标的变化。实验结果表明 :1.经过一年训练 ,少年男子篮球运动员的身高 ,体重 ,握力均有显著增长 ,说明训练符合生长规律。 2 通过 1年训练 ,少年男子篮球运动员在运动负荷后 2、5、10min血乳酸水平下降、清除加快 ,最大摄氧量显著提高 ,表明采用的训练方法对运动员有氧代谢能力的提高有帮助。 3 在训练后 ,出现免疫球蛋白下降的现象 ,是今后应加以注意的问题  相似文献   

14.
通过灌服姜黄素溶液,揭示姜黄素对大强度耐力训练大鼠运动能力影响的生物化学机制。以SD雄性大鼠为实验对象,采用递增强度跑台训练,建立大强度耐力运动模型,测定血清酶活性及反映大鼠物质与能量代谢的一些生化指标。结果显示,姜黄素能改善大鼠由于大强度耐力训练造成的Hb含量下降,使大鼠Hb含量明显上升;姜黄素组运动大鼠血清ALT、AST、CK、LDH活性明显低于运动对照组;姜黄素组运动大鼠血清LDL、BU含量都较运动组有显著的降低;姜黄素组运动大鼠血清Cr、HDL的含量较运动对照组又有显著升高;服用姜黄素运动大鼠肌糖原和肝糖原含量都明显高于运动组。提示:姜黄素能减轻大强度耐力运动对大鼠肝脏、心肌、骨骼肌、肾脏等组织细胞的损伤;姜黄素能降低运动大鼠体内蛋白质分解,增加运动大鼠肝糖原、肌糖和磷酸肌酸能源物质的含量,提高大鼠肌肉的工作能力,使运动大鼠机体功能正常发挥;姜黄素与运动结合能更有效地调整血清甘油三酯、胆固醇、高密度脂蛋白和低密度脂蛋白的代谢,对心血管系统有一定的保护作用;姜黄素能够保证大强度运动时运动大鼠神经、肌肉等组织的糖供应,从而提高运动大鼠的运动能力,延缓大鼠运动性疲劳的产生。  相似文献   

15.
男子赛艇运动员与训练有关的有氧无氧能力和激素变化   总被引:3,自引:0,他引:3  
观察了15名男子赛艇运动员为期30周训练中最大做功能力、最大乳酸值、最大摄氧量及心脏形态和功能的变化及相应时期的血清睾酮、游离睾酮、皮质醇的急慢性效应。在以力量训练为主的准备期,变化较小,以专项训练为主的准备期,心功能和有氧能力明显改善。最大负荷后及高强度训练12周后,血清睾酮降低。提示在不同训练周期中力量—耐力训练应合理安排,有利于发挥机体适应能力。  相似文献   

16.
目的:探讨茜草提取物对大强度耐力训练大鼠股四头肌ATP酶活性及运动能力的影响,为茜草作为运动补剂提供理论依据。方法:选取24只大鼠,随机分为安静组、训练组和训练加药组。训练组与训练加药组按照训练模型进行为期6周的耐力训练,最后一次训练进行一次力竭性运动,力竭后取股四头肌组织并进行样本处理。内容:通过建立大强度耐力训练大鼠模型,测定运动大鼠力竭运动的时间以及股四头肌ATP酶活性。研究茜草提取物对大强度耐力训练大鼠股四头肌的保护作用。结论:茜草提取物可明显提高大鼠股四头肌在大强度耐力运动中的能量供给,提高了大鼠大强度耐力运动的运动时间。  相似文献   

17.
Abstract

Elite badminton requires muscular endurance combined with appropriate maximal and explosive muscle strength. The musculature of the lower extremities is especially important in this context since rapid and forceful movements with the weight of the body are performed repeatedly throughout a match. In the present study, we examined various leg-strength parameters of 35 male elite badminton players who had been performing resistance exercises as part of their physical training for several years. The badminton players were compared with an age-matched reference group, the members of whom were physically active on a recreational basis, and to the same reference group after they had performed resistance training for 14 weeks. Maximal muscle strength of the knee extensor (quadriceps) and flexor muscles (hamstrings) was determined using isokinetic dynamometry. To measure explosive muscle strength, the contractile rate of force development was determined during maximal isometric muscle contractions. In general, the badminton players showed greater maximal muscle strength and contractile rate of force development than the reference group: mean quadriceps peak torque during slow concentric contraction: 3.69 Nm · kg?1, s=0.08 vs. 3.26 Nm · kg?1, s=0.8 (P<0.001); mean hamstring peak torque during slow concentric contraction: 1.86 Nm · kg?1, s=0.04 vs. 1.63 Nm · kg?1, s=0.04 (P<0.001); mean quadriceps rate of force development at 100 ms: 24.4 Nm · s?1·kg?1, s=0.5 vs. 22.1 Nm·s?1 · kg?1, s=0.6 (P<0.05); mean hamstring rate of force development at 100 ms: 11.4 Nm · s?1·kg?1, s=0.3 vs. 8.9 Nm · s?1 · kg?1, s=0.4 (P<0.05). However, after 14 weeks of resistance training the reference group achieved similar isometric and slow concentric muscle strength as the badminton players, although the badminton players still had a higher isometric rate of force development and muscle strength during fast (240° · s?1) quadriceps contractions. Large volumes of concurrent endurance training could have attenuated the long-term development of maximal muscle strength in the badminton players. The badminton players had a higher contractile rate of force development than the reference group before and after resistance training. Greater explosive muscle strength in the badminton players might be a physiological adaptation to their badminton training.  相似文献   

18.
The aim of this study was to assess the effects of a single session of cold or thermoneutral water immersion after a one-off match on muscular dysfunction and damage in soccer players. Twenty-male soccer players completed one match and were randomly divided into cryotherapy (10 min cold water immersion, 10°C, n = 10) and thermoneutral (10 min thermoneutral water immersion, 35°C, n = 10) groups. Muscle damage (creatine kinase, myoglobin), inflammation (C-reactive protein), neuromuscular function (jump and sprint abilities and maximal isometric quadriceps strength), and delayed-onset muscle soreness were evaluated before, within 30 min of the end, and 24 and 48 h after the match. After the match, the players in both groups showed increased plasma creatine kinase activity (30 min, 24 h, 48 h), myoglobin (30 min) and C-reactive protein (30 min, 24 h) concentrations. Peak jump ability and maximal strength were decreased and delayed-onset muscle soreness increased in both groups. However, differential alterations were observed between thermoneutral water and cold water immersion groups in creatine kinase (30 min, 24 h, 48 h), myoglobin (30 min), C-reactive protein (30 min, 24 h, 48 h), quadriceps strength (24 h), and quadriceps (24 h), calf (24 h) and adductor (30 min) delayed-onset muscle soreness. The results suggest that cold water immersion immediately after a one-off soccer match reduces muscle damage and discomfort, possibly contributing to a faster recovery of neuromuscular function.  相似文献   

19.
举重训练对血清酶和肌红蛋白水平的影响   总被引:19,自引:1,他引:18  
本文研究了举重训练对血清酶和肌红蛋白水平的影响。结果表明:大强度举重练习后受试者均出现血清CPK、LDH活性和Mb浓度的明显增加,并伴有不同程度的肌肉酸痛。然而,举重运动员运动后血清CPK、LDH和Mb的升高幅度明显小于体育系学生,且恢复快,肌肉酸痛程度也明显较轻。提示:大强度举重练习导致骨骼肌细胞一定的损伤,但经常的举重训练可使肌肉产生适应,减轻肌肉损伤的程度。  相似文献   

20.
Abstract

This study examined the influence of holding a bag with one hand on the center of foot pressure (COP) and the electromyographic responses in lower leg muscles. Thirteen healthy male adults participated in this study to keep an upright posture while holding a load with the dominant hand with four bag weight conditions (0%, 15%, 30%, and 45% of maximal voluntary contraction (MVC) of the jerk strength). Integrated Electromyography (iEMG) and mean power frequency (MPF) of EMG were calculated to estimate the degree of muscle activity and fatigue in the tibialis anterior and soleus that are involved in ankle joint control. Body sway was evaluated by the mean position of left-right (X) and front-back (Y) axis sway and the following 4 body sway factors; unit time sway factor (F1), front-back sway factor (F2), left-right sway factor (F3), high frequency band power spectrum factor (F4). When holding a bag at 45% MVC or more of the jerk strength with a single hand for one minute, muscle activity in the lower leg on the side of the bag increased markedly, and muscle fatigue was induced in the antigravity muscles of both legs. As a result, anteroposterior sway increased to a short, quick sway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号