首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1903年,A.M.Nesbitt 建立了如下关于三角形边长a、b、c的几何不等式[1] 322abcbccaab? < , (1) 本文给出Nesbitt不等式在四面体中的推广形式. 定理 设四面体1234AAAA中,顶点Ai所对的面的三角形面积为iS(1,2,3,4i=),实数l≥1,则 l34≤1234()SSSSl 2341()SSSSl 3412  相似文献   

2.
1903年,A.M.Nesbitt建立了如下关于三 角形边长a、b、c的几何不等式[1] 32.2abcbccaab?+<+++ (1) 文[2]中,我们给出了“面型”的四面体Nesbitt不等式: 41423iiiSSSll=骣?琪-桫, (2) 其中,1l,41iiSS==,iS(1,2,3,4i=)为四面体1234AAAA中顶点Ai所对面的三角形面积. 本文建立“线型”的四面体Nesbitt不等式,即 定理 设四面体1234AAAA六条棱的长分别为 1a、2a、3a、4a、5a、6a,61iisa==,实数1l,则 6163()52iiiasalll=?-, (3) 等号当且仅当四面体1234AAAA为正四面体时成立. 证明 因为 61iiiasa=-616iissa==-+- 6…  相似文献   

3.
张垚 《福建中学数学》2003,(6):21-22,12
在文[1]中我们将关于三角形的边长和旁切圆半径的R.R.Janic不等式[2]和它的逆向形式推广到四面体的情形.在本文中,我们将给出关于四面体中特殊线段的R.R.Janic型不等式及其逆向不等式. 全文约定:四面体1234AAAA的体积,内切球半径,外接球半径分别为,V r和R,棱长是 (1ijaij相似文献   

4.
设a、b、c为正实数,则有 222[1]1(),2abcabcbccaab (1) 222[2]1().2abcabcabbcca (2) 文[3]将不等式(1)、(2)统一推广为 定理1 设a、b、c为正实数,l、m、u是不全为零的非负实数,则有 2aabcabclmulmu 宄 . (3) 其中表示对a、b、c的循环和,等号当且仅当abc==或0,0lmu==时成立. 本文从指数方面考虑,给出不等式(3)的推广. 定理2 设a、b、c为正实数, l、m、u是不全为零的非负实数,2m,则有 213()mmmaabcabclmulmu-- 宄 . (4)证明 22()mmaaabcabclmulmu=? 22()()maabclmu? (根据Cauchy不等式)① 22()()maalmu= …  相似文献   

5.
文[1]中作者给出并证明了Nesbitt不等式的加强式,同时介绍了其运用,本文给出Nesbitt不等式加强式的一个等价形式,在此基础上建立几个新颖的不等式.Nesbitt不等式设a、b、c是正实数,则有a b+c+b c+a+c a+b≥32(1).文[1]将(1)式加强为:设a、b、c是正实数,则有a b+c+b c+a+c a+b≥32+a-b 2+b-c 2+c-a 2 a+b+c 2(2).这里给出(2)的等价变形形式,在此基础上建立几个有趣的不等式.  相似文献   

6.
文[1]收录了如下的Nesbitt不等式:设S k是四面体A1A2A3A4的顶点Ak(k=1,2,3,4)对面的三角形面积,记41kkS S==∑,λ≥1,则414()23kk kSS Sλλ=≤∑?<.①笔者发现,对于n边形,也有定理在n边形A1A2An中,记A1A2=a1,A2A3=a2,,An A1=an,λ≥1,1nkks a==∑,则1()2(1)nkk knan s aλλ=?≤∑?<.②证明由常见不等式x1x2xnnα+α++α(x1x2xn)n≥+++α③(其中x1,x2,,xn,α∈R+,且α≥1),得11n(k)(1nk)k k kka nas a n s aλλ==∑?≥∑?221(1n k)k k knan sa aλ==∑?,由文[2]定理得2212121()()nnkk knk k kk kkaasa a sa a===∑?≥∑∑?222221…  相似文献   

7.
笔者近日在竞赛教学中遇到如下赛题:问题(2012年全国高中数学联赛甘肃预赛试题)设a,b,c为正实数,且d+6+c=1,求证:(a~2+b~2+c~2)(a/b+c+b/a+c+c/a+b)≥1/2本文在此将先给出上述问题的简洁证明,然后探讨与著名不等式(Nesbitt不等式)相关的不等式链,现与读者共享11问题的简洁证明为方便,我们先介绍著名Nesbitt不等式:若  相似文献   

8.
一个不等式的再推广   总被引:1,自引:0,他引:1  
问题 :已知 a,b,c∈ R~+,则 a/(b + c)+ b/(a + c)+ c/(a + b)≥ 3/2文 [1 ]将其推广为 :设△ ABC的三边为 a,b,c,若 -1 <λ<1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥3λ + 2 ( 1 )本文将 ( 1 )式推广为 :命题 1 已知 a,b,c∈ R+,若 -2 <λ≤1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥ 3λ + 2 ( 2 )若λ=1时 ,( 2 )式显然成立 ,若λ∈ ( -2 ,1 )时 ,令x =λa + b + cy =λb + a + cz =λc+ a + b a =( y + z) - (λ+ 1 ) x( 1 -λ) (λ + 2 )b =( x + z) - (λ + 1 ) y( 1 -λ) (λ + 2 )c=( x + y) - (λ+ 1 ) z( 1 -λ)…  相似文献   

9.
正问题设a,b,c,0,a+b+c=3,求证:1/(2+2a+b2)+1/(2+b2+c2)+1/(2+2c+2a)+≤3/3.①这是2009年数学奥林匹克竞赛伊朗国家选拔考试中的一道试题.文[1]采用固定变量的方法给出了式①的一个证明,利用同样的方法,文[2]给出了该试题的如下推广:  相似文献   

10.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

11.
文[1]中借助代数恒等式a^2/a+b+b^2/b+c+c^2/c+a=b^2/a+b+c^2/b+c/a^2/c+a证明了4个相关的不等式,并在文末提出如下问题:已知a,b,c ∈ R^+,当入与μ满足什么条件时,如下不等式成立:a^2/√λ(a^2+b^2)+aμab+b^2/√λ(b^2+c^2)+2μbc+c^2/√λ(c^2+a^2)+2μab+b^2/λ(b^2+c^2)+2μbc+c^2√λ(c^2+a^2)+2μab≥a+b+c/√2(λ+μ)(1).  相似文献   

12.
第42届国数学奥林匹克试题第2题是:对所有正实数a,b,c,证明(a)/(a2+8bc)+(b)/(b2+8ca)+(c)/(c2+8ab)≥1.文[1]采用文[3][4]的方法给出其推广为:若a,b,c∈R+,λ≥8,则(a)/(a2+λbc)+(b)/(b2+λca)+(c)/(c2+λab)≥(3)/(1+λ)(1).文[2]给出了(1)式的简证,本文进一步把(1)式推广为更一般的形式:  相似文献   

13.
数学通讯2008年三月号问题1724:已知a,b,c为满足a+b+c=1的正实数,求证1/(a+bc)+1/(b+ac)+1/(c+ba)≥(27)/4(1).文[1]和文[2]分别用了高、初等数学的方法对该命题进行了证明,特别地,文[2]的两位老师还对文[1]给出的两个推广命题作了修正,得到推广1  相似文献   

14.
文[1]有这样两个不等式: 若a, b∈R+, a+b=1, 则 4/3≤1/(a+1)+1/(b+1)<3/2,(1) 3/2<1/(a2+1)+1/(b2+1)≤8/5.(2) 文[2]建立了如下两个新不等式: 若a, b∈R+, a+b=1,则 3)/2<1/(a3+1)+1/(b3+1)≤16/9,(3) 1)/(an+1)+1/(bn+1)>3/2.(4) 且在文末提出如下猜想:  相似文献   

15.
三、正弦定理在四面体中的类似定理三角形的正弦定理为a/(sinA)=b/sinB=c/(sinC)=2R,又R=(abc)/(4△),(△为三角形面积)于是有a/(sinA)=b/(sinB)=c/(sinC)=((2abc)/(2~2△))~((*))。利用一中等式6,容易发现:四面体各面与所对三面角之间有可以完全与(*)式类比的关系。  相似文献   

16.
文[1]用高等数学方法证明了如下一个加强不等式,即命题1设a,b,c均为正数,且abc=1,若λ≤9,则1/a+1/b+1/c+λ/(a+b+c)≥3+λ/3.笔者发现这个不等式并不成立,反例如下:当a=b=2/3,c=9/4,λ=9时,  相似文献   

17.
正在应用放缩法证明不等式时,有以下一个典型例子[1]:设0≤a,b,c≤1,则a/(1+b+c)+b/(1+c+a)+c/(1+a+b)+(1-a)(1-b)(1-c)≤1(1)当且仅当a,b,c中有两个为零,另一个为[0,1]中的任意数,或者当a,b,c不全为零且不为零的数都等于  相似文献   

18.
正Nesbitt不等式:若a,b,c∈R+,则a/(b+c)+b/(c+a)+c/(a+b)≥3/2.该不等式可参见高中课标课程人教版高中教材《不等式选讲》第49页习题第7题,它也曾经作为1963年俄罗斯数学竞赛试题出现,其证明方法有多种,但基本上都是变形复杂、计算量大,对学生来讲可操作性不高.梁开华在其文章《两道竞赛题的变化题》中给出了上述著名的不等式的两道如下变化题:  相似文献   

19.
一个不等式推广问题的研讨   总被引:1,自引:0,他引:1  
文[1]给出了如下: 定理1设a、b、c为正实数,l、m、n是不全为零的非负实数,则有 2aabcabc++l+m+nl+m+n, (1) 其中表示对a 、b、c的循环和,等号当且仅当abc==或0,0lm=n=时成立. 文[2]将定理1推广为: 定理2 设a、b、c为正实数, l、m、n是不全为零的非负实数,2m,则有 213()mmmaabcabc--++l+m+nl+m+n,(2) 其中表示对a、b、c的循环和,当m>2时,等号当且仅当abc==时成立;当m=2时,等号当且仅当abc==或0,l筸=n0=时成立.. 本文从项数方面入手,将定理2推广为: 定理3 设1,2,,nxxxL为正实数,12,,ll ,nlL是不全为零的非负实数,2m,则有 11122mnnxxxx…  相似文献   

20.
从一个简单的不等式命题说开去   总被引:1,自引:0,他引:1  
命题若a,b为正实数,则1/((1+a)~2)+1/((1+b)~2)≥1/(1+ab).上述命题可见于文[1],笔者在本刊文[2]中给出以下简洁证明.证明:因为(a+b)(1+ab)=b(1+a)~2+a(1-b)~2≥b(1+a)~2,所以1/((1+a)~2)≥b/((a+b)(1+ab)),同理可得1/((1+b)~2)≥  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号