首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Abstract It is not known if ergogenic effects of caffeine ingestion in athletic groups occur in the sedentary. To investigate this, we used a counterbalanced, double-blind, crossover design to examine the effects of caffeine ingestion (6 mg?·?kg(-1) body-mass) on exercise performance, substrate utilisation and perceived exertion during 30 minutes of self-paced stationary cycling in sedentary men. Participants performed two trials, one week apart, after ingestion of either caffeine or placebo one hour before exercise. Participants were instructed to cycle as quickly as they could during each trial. External work (J?·?kg(-1)) after caffeine ingestion was greater than after placebo (P?=?0.001, effect size [ES]?=?0.3). Further, heart rate, oxygen uptake and energy expenditure during exercise were greater after caffeine ingestion (P?=?0.031, ES?=?0.4; P?=?0.009, ES?=?0.3 and P?=?0.018, ES?=?0.3; respectively), whereas ratings of perceived exertion and respiratory exchange ratio values did not differ between trials (P?=?0.877, ES?=?0.1; P?=?0.760, ES?=?0.1; respectively). The ability to do more exercise after caffeine ingestion, without an accompanying increase in effort sensation, could motivate sedentary men to participate in exercise more often and so reduce adverse effects of inactivity on health.  相似文献   

2.
This study investigated the effects of two different doses of caffeine on endurance cycle time trial performance in male athletes. Using a randomised, placebo-controlled, double-blind crossover study design, sixteen well-trained and familiarised male cyclists (Mean ± s: Age = 32.6 ± 8.3 years; Body mass = 78.5 ± 6.0 kg; Height = 180.9 ± 5.5 cm VO2(peak) = 60.4 ± 4.1 ml x kg(-1) x min(-1)) completed three experimental trials, following training and dietary standardisation. Participants ingested either a placebo, or 3 or 6 mg x kg(-1) body mass of caffeine 90 min prior to completing a set amount of work equivalent to 75% of peak sustainable power output for 60 min. Exercise performance was significantly (P < 0.05) improved with both caffeine treatments as compared to placebo (4.2% with 3 mg x kg(-1) body mass and 2.9% with 6 mg x kg(-1) body mass). The difference between the two caffeine doses was not statistically significant (P = 0.24). Caffeine ingestion at either dose resulted in significantly higher heart rate values than the placebo conditions (P < 0.05), but no statistically significant treatment effects in ratings of perceived exertion (RPE) were observed (P = 0.39). A caffeine dose of 3 mg x kg(-1) body mass appears to improve cycling performance in well-trained and familiarised athletes. Doubling the dose to 6 mg x kg(-1) body mass does not confer any additional improvements in performance.  相似文献   

3.
The aim of this study was to determine the effects of caffeine ingestion on a 'preloaded' protocol that involved cycling for 2 min at a constant rate of 100% maximal power output immediately followed by a 1-min 'all-out' effort. Eleven male cyclists completed a ramp test to measure maximal power output. On two other occasions, the participants ingested caffeine (5 mg. kg(-1)) or placebo in a randomized, double-blind procedure. All tests were conducted on the participants' own bicycles using a Kingcycle test rig. Ratings of perceived exertion (RPE; 6-20 Borg scale) were lower in the caffeine trial by approximately 1 RPE point at 30, 60 and 120 s during the constant rate phase of the preloaded test (P <0.05). The mean power output during the all-out effort was increased following caffeine ingestion compared with placebo (794+/-164 vs 750+/-163 W; P=0.05). Blood lactate concentration 4, 5 and 6 min after exercise was also significantly higher by approximately 1 mmol. l(-1) in the caffeine trial (P <0.05). These results suggest that high-intensity cycling performance can be increased following moderate caffeine ingestion and that this improvement may be related to a reduction in RPE and an elevation in blood lactate concentration.  相似文献   

4.
Following fixed-duration exercise of submaximal intensity, caffeine ingestion is associated with an attenuation of the exercise-induced decline in N-formyl-methionyl-phenyl-alanine (f-MLP) stimulated neutrophil oxidative burst. However, the response following high-intensity exhaustive exercise is unknown. Nine endurance-trained male cyclists ingested 6 mg caffeine or placebo per kilogram of body mass 60 min before cycling for 90 min at 70% of maximal oxygen consumption (VO2max) and then performing a time-trial requiring an energy expenditure equivalent to 30 min cycling at 70% maximum power output. Time-trial performance was 4% faster in the caffeine than in the placebo trial (P = 0.043). Caffeine was associated with an increased plasma adrenaline concentration after 90 min of exercise (P = 0.046) and immediately after the time-trial (P = 0.02). Caffeine was also associated with an increased serum caffeine concentration (P < 0.01) after 90 min of exercise and immediately after the time-trial, as well as 1 h after the time-trial. However, the f-MLP-stimulated neutrophil oxidative burst response fell after exercise in both trials (P = 0.002). There was no effect of caffeine on circulating leukocyte or neutrophil counts, but the lymphocyte count was significantly lower on caffeine (20%) after the time-trial (P = 0.003). Our results suggest that high-intensity exhaustive exercise negates the attenuation of the exercise-induced decrease in neutrophil oxidative burst responses previously observed when caffeine is ingested before exercise of fixed duration and intensity. This may be associated with the greater increase in adrenaline concentration observed in the present study.  相似文献   

5.
The aim of the present study was to examine the relationship between intensities of exercise during match-play of elite-standard soccer referees with those of the players from the same match. Match analysis data were collected (Prozone? Leeds, UK) for 18 elite-standard soccer referees (age 26-49 years) on FA Premier League matches during the 2008/09 English FA Premier League season (236 observations). Running categories for referees and players were as follows: total distance covered (m); high-speed running distance (speed >19.8 km · h(-1)); and sprinting distance (speed >25.2 km · h(-1)). Analysis of the distance-time regression coefficients revealed no differences between the referees' and players' within-match rates of change for total distance covered (-0.594 ± 0.394 vs. -0.713 ± 0.269 m · min(-1); P = 0.104), high-speed running (-0.039 ± 0.077 vs. -0.059 ± 0.030 m · min(-1); P = 0.199), and sprinting (-0.003 ± 0.039 vs. -0.021 ± 0.017 m · min(-1); P = 0.114). In addition, there were no differences between across-season rates of change for total distance (-26.756 ± 40.434 vs. -20.031 ± 25.502 m per match day; P = 0.439) and sprinting (-9.662 ± 7.564 vs. -8.589 ± 4.351 m per match day; P = 0.542). These results show that elite-standard soccer referees' intensities of exercise during match-play are interrelated with those of the players and thus demonstrate that referees are able to keep pace with the players during FA Premier League matches.  相似文献   

6.
We tested the hypothesis that exercise-induced muscle damage would increase the ventilatory (V(E)) response to incremental/ramp cycle exercise (lower the gas exchange threshold) without altering the blood lactate profile, thereby dissociating the gas exchange and lactate thresholds. Ten physically active men completed maximal incremental cycle tests before (pre) and 48 h after (post) performing eccentric exercise comprising 100 squats. Pulmonary gas exchange was measured breath-by-breath and fingertip blood sampled at 1-min intervals for determination of blood lactate concentration. The gas exchange threshold occurred at a lower work rate (pre: 136 ± 27 W; post: 105 ± 19 W; P < 0.05) and oxygen uptake (VO(2)) (pre: 1.58 ± 0.26 litres · min(-1); post: 1.41 ± 0.14 litres · min(-1); P < 0.05) after eccentric exercise. However, the lactate threshold occurred at a similar work rate (pre: 161 ± 19 W; post: 158 ± 22 W; P > 0.05) and VO(2) (pre: 1.90 ± 0.20 litres · min(-1); post: 1.88 ± 0.15 litres · min(-1); P > 0.05) after eccentric exercise. These findings demonstrate that exercise-induced muscle damage dissociates the V(E) response to incremental/ramp exercise from the blood lactate response, indicating that V(E) may be controlled by additional or altered neurogenic stimuli following eccentric exercise. Thus, due consideration of prior eccentric exercise should be made when using the gas exchange threshold to provide a non-invasive estimation of the lactate threshold.  相似文献   

7.
Abstract

The current study examined the effect of acute caffeine ingestion on mean and peak power production, fatigue index and rating of perceived exertion (RPE) during upper body and lower body Wingate anaerobic test (WANT) performance. Using a double-blind design, 22 males undertook one upper body and one lower body WANT, 60?min following ingestion of caffeine (5?mg*kg?1) and one upper body and one lower body WANT following ingestion of placebo (5?mg*kg?1 Dextrose). Peak power was significantly higher (P?=?.001) following caffeine ingestion in both upper and lower body WANT. Peak power and mean power was also significantly higher during lower body, compared to upper body WANTs irrespective of substance ingested. However, caffeine ingestion did not enhance mean power neither in upper nor lower-body WANT. There were no significant differences in mean fatigue index as a consequence of substance ingested or mode of exercise (all P?>?0.05). For RPE there was also a significant substance ingested X mode interaction (P?=?.001) where there were no differences in RPE between caffeine and placebo conditions in lower body WANTs but significantly lower RPE during upper body WANT in the presence of caffeine compared to placebo (P?=?.014). This is the first study to compare the effects of caffeine ingestion on upper and lower body 30-second WANT performance and suggests that caffeine ingestion in the dose of 5?mg*kg?1 ingested 60?min prior to exercise significantly enhances peak power when data from upper and lower body WANTs are combined.  相似文献   

8.
The aim of this study was to examine the effectiveness of either a standard care programme (n = 9) or a 12-week supported exercise programme (n = 10) on glycaemic control, β-cell responsiveness, insulin resistance, and lipid profiles in newly diagnosed Type 2 diabetes patients. The standard care programme consisted of advice to exercise at moderate to high intensity for 30 min five times a week; the supported exercise programme consisted of three 60-min supported plus two unsupported exercise sessions per week. Between-group analyses demonstrated a difference for changes in low-density lipoprotein cholesterol only (standard care programme 0.01 mmol · L(-1), supported exercise programme -0.6 mmol · L(-1); P = 0.04). Following the standard care programme, within-group analyses demonstrated a significant reduction in waist circumference, whereas following the supported exercise programme there were reductions in glycosylated haemoglobin (6.4 vs. 6.0%; P = 0.007), waist circumference (101.4 vs. 97.2 cm; P = 0.021), body mass (91.7 vs. 87.9 kg; P = 0.007), body mass index (30.0 vs. 28.7 kg · m(-2); P = 0.006), total cholesterol (5.3 vs. 4.6 mmol · L(-1); P = 0.046), low-density lipoprotein cholesterol (3.2 vs. 2.6 mmol · L(-1); P = 0.028), fasting β-cell responsiveness (11.5 × 10(-9) vs. 7.0 × 10(-9) pmol · kg(-1) · min(-1); P = 0.009), and insulin resistance (3.0 vs. 2.1; P = 0.049). The supported exercise programme improved glycaemic control through enhanced β-cell function associated with decreased insulin resistance and improved lipid profile. This research highlights the need for research into unsupported and supported exercise programmes to establish more comprehensive lifestyle advice for Type 2 diabetes patients.  相似文献   

9.
There is little published data in relation to the effects of caffeine upon cycling performance, speed and power in trained cyclists, especially during cycling of approximately 60 s duration. To address this, eight trained cyclists performed a 1 km time-trial on an electronically braked cycle ergometer under three conditions: after ingestion of 5 mg x kg-1 caffeine, after ingestion of a placebo, or a control condition. The three time-trials were performed in a randomized order and performance time, mean speed, mean power and peak power were determined. Caffeine ingestion resulted in improved performance time (caffeine vs. placebo vs. control: 71.1 +/- 2.0 vs. 73.4 +/- 2.3 vs. 73.3 +/- 2.7 s; P = 0.02; mean +/- s). This change represented a 3.1% (95% confidence interval: 0.7-5.6) improvement compared with the placebo condition. Mean speed was also higher in the caffeine than placebo and control conditions (caffeine vs. placebo vs. control: 50.7 +/- 1.4 vs. 49.1 +/- 1.5 vs. 49.2 +/- 1.7 km x h-1; P = 0.0005). Mean power increased after caffeine ingestion (caffeine vs. placebo vs. control: 523 +/- 43 vs. 505 +/- 46 vs. 504 +/- 38 W; P = 0.007). Peak power also increased from 864 +/- 107 W (placebo) and 830 +/- 87 W (control) to 940 +/- 83 W after caffeine ingestion (P = 0.027). These results provide support for previous research that found improved performance after caffeine ingestion during short-duration high-intensity exercise. The magnitude of the improvements observed in our study could be due to our use of sport-specific ergometry, a tablet form and trained participants.  相似文献   

10.
Caffeine consumption prior to athletic performance has become commonplace. The usual dosage is approximately 200 mg, a level of caffeine ingestion equivalent to two cups of brewed coffee. This study was designed to examine the effects of a common level of caffeine ingestion, specifically 200 mg, on metabolism during submaximal exercise performance in five males. The subjects performed two 60-min monitored treadmill workouts at 60% maximal heart rate during a 2-week period. The subjects were randomly assigned, double-blind to receive a caffeine or placebo capsule 60 min prior to exercise. Testing was performed in the afternoon following a midnight fast. Venous blood was withdrawn pre-exercise, every 15 min during the workout, and 10 min after recovery. Blood was analysed for free fatty acid, triglycerides, glucose, lactic acid, haemoglobin and haematocrit. The respiratory exchange ratio (R), perceived exertion (RPE) and oxygen uptake were measured every 4 min during exercise. An examination of the data with repeated-measures ANOVA revealed no significant differences between the two groups. Within the limitations of the study, it was concluded that 200 mg caffeine failed to affect metabolism during 60 min submaximal exercise.  相似文献   

11.
This study examined the effects of caffeine, co-ingested with a high fat meal, on perceptual and metabolic responses during incremental (Experiment 1) and endurance (Experiment 2) exercise performance. Trained participants performed three constant-load cycling tests at approximately 73% of maximal oxygen uptake (VO2max) for 30 min at 20 degrees C (Experiment 1, n = 8) and to the limit of tolerance at 10 degrees C (Experiment 2, n = 10). The 30 min constant-load exercise in Experiment 1 was followed by incremental exercise (15 W . min-1) to fatigue. Four hours before the first test, the participants consumed a 90% carbohydrate meal (control trial); in the remaining two tests, the participants consumed a 90% fat meal with (fat + caffeine trial) and without (fat-only trial) caffeine. Caffeine and placebo were randomly assigned and ingested 1 h before exercise. In both experiments, ratings of perceived leg exertion were significantly lower during the fat + caffeine than fat-only trial (Experiment 1: P < 0.001; Experiment 2: P < 0.01). Ratings of perceived breathlessness were significantly lower in Experiment 1 (P < 0.01) and heart rate higher in Experiment 2 (P < 0.001) on the fat + caffeine than fat-only trial. In the two experiments, oxygen uptake, ventilation, blood [glucose], [lactate] and plasma [glycerol] were significantly higher on the fat + caffeine than fat-only trial. In Experiment 2, plasma [free fatty acids], blood [pyruvate] and the [lactate]:[pyruvate] ratio were significantly higher on the fat + caffeine than fat-only trial. Time to exhaustion during incremental exercise (Experiment 1: control: 4.9, s = 1.8 min; fat-only: 5.0, s = 2.2 min; fat + caffeine: 5.0, s = 2.2 min; P > 0.05) and constant-load exercise (Experiment 2: control: 116 (88 - 145) min; fat-only: 122 (96 - 144) min; fat + caffeine: 127 (107 - 176) min; P > 0.05) was not different between the fat-only and fat + caffeine trials. In conclusion, while a number of metabolic responses were increased during exercise after caffeine ingestion, perception of effort was reduced and this may be attributed to the direct stimulatory effect of caffeine on the central nervous system. However, this caffeine-induced reduction in effort perception did not improve exercise performance.  相似文献   

12.
In this study, we investigated the effect of ingesting carbohydrate alone or carbohydrate with protein on functional and metabolic markers of recovery from a rugby union-specific shuttle running protocol. On three occasions, at least one week apart in a counterbalanced order, nine experienced male rugby union forwards ingested placebo, carbohydrate (1.2 g · kg body mass(-1) · h(-1)) or carbohydrate with protein (0.4 g · kg body mass(-1) · h(-1)) before, during, and after a rugby union-specific protocol. Markers of muscle damage (creatine kinase: before, 258 ± 171 U · L(-1) vs. 24 h after, 574 ± 285 U · L(-1); myoglobin: pre, 50 ± 18 vs. immediately after, 210 ± 84 nmol · L(-1); P < 0.05) and muscle soreness (1, 2, and 3 [maximum soreness = 8] for before, immediately after, and 24 h after exercise, respectively) increased. Leg strength and repeated 6-s cycle sprint mean power were slightly reduced after exercise (93% and 95% of pre-exercise values, respectively; P < 0.05), but were almost fully recovered after 24 h (97% and 99% of pre-exercise values, respectively). There were no differences between trials for any measure. These results indicate that in experienced rugby players, the small degree of muscle damage and reduction in function induced by the exercise protocol were not attenuated by the ingestion of carbohydrate and protein.  相似文献   

13.
Nine male student games players consumed either flavoured water (0.1 g carbohydrate, Na+ 6 mmol x l(-1)), a solution containing 6.5% carbohydrate-electrolytes (6.5 g carbohydrate, Na+ 21 mmol x l(-1)) or a taste placebo (Na+ 2 mmol x l(-1)) during an intermittent shuttle test performed on three separate occasions at an ambient temperature of 30 degrees C (dry bulb). The test involved five 15-min sets of repeated cycles of walking and variable speed running, each separated by a 4-min rest (part A of the test), followed by 60 s run/60 s rest until exhaustion (part B of the test). The participants drank 6.5 ml x kg(-1) of fluid as a bolus just before exercise and thereafter 4.5 ml x kg(-1) during every exercise set and rest period (19 min). There was a trial order effect. The total distance completed by the participants was greater in trial 3 (8441 +/- 873 m) than in trial 1 (6839 +/- 512, P < 0.05). This represented a 19% improvement in exercise capacity. However, the trials were performed in a random counterbalanced order and the participants completed 8634 +/- 653 m, 7786 +/- 741 m and 7099 +/- 647 m in the flavoured water (FW), placebo (P) and carbohydrate-electrolyte (CE) trials, respectively (P = 0.08). Sprint performance was not different between the trials but was impaired over time (FW vs P vs CE: set 1, 2.41 +/- 0.02 vs 2.39 +/- 0.03 vs 2.39 +/- 0.03 s; end set, 2.46 +/- 0.03 vs 2.47 +/- 0.03 vs 2.47 +/- 0.02 s; main effect time, P < 0.01). The rate of rise in rectal temperature was greater in the carbohydrate-electrolyte trial (rise in rectal temperature/duration of trial, degrees C x h(-1); FW vs CE, P < 0.05; P vs CE, N.S.). Blood glucose concentrations were higher in the carbohydrate-electrolyte than in the other two trials (FW vs P vs CE:rest, 4.4 +/- 0.1 vs 4.3 +/- 0.1 vs 4.2 +/- 0.1 mmol x l(-1); end of exercise, 5.4 +/- 0.3 vs 6.4 +/- 0.6 vs 7.2 +/- 0.5 mmol x l(-1); main effect trial, P < 0.05; main effect time, P < 0.01). Plasma free fatty acid concentrations at the end of exercise were lower in the carbohydrate-electrolyte trial than in the other two trials (FW vs P vs CE: 0.57 +/- 0.08 vs 0.53 +/- 0.11 vs 0.29 +/- 0.04 mmol x l(-1); interaction, P < 0.01). The correlation between the rate of rise in rectal temperature (degrees C x h(-1)) and the distance completed was -0.91, -0.92 and -0.96 in the flavoured water, placebo and carbohydrate-electrolyte conditions, respectively (P < 0.01). Heart rate, blood pressure, plasma ammonia, blood lactate, plasma volume and rate of perceived exertion were not different between the three fluid trials. Although drinking the carbohydrate-electrolyte solution induced greater metabolic changes than the flavoured water and placebo solutions, it is unlikely that in these unacclimated males carbohydrate availability was a limiting factor in the performance of intermittent running in hot environmental conditions.  相似文献   

14.
This study was designed to investigate the effect of ingesting a glucose plus fructose solution on the metabolic responses to soccer-specific exercise in the heat and the impact on subsequent exercise capacity. Eleven male soccer players performed a 90 min soccer-specific protocol on three occasions. Either 3 ml · kg(-1) body mass of a solution containing glucose (1 g · min(-1) glucose) (GLU), or glucose (0.66 g · min(-1)) plus fructose (0.33 g · min(-1)) (MIX) or placebo (PLA) was consumed every 15 minutes. Respiratory measures were undertaken at 15-min intervals, blood samples were drawn at rest, half-time and on completion of the protocol, and muscle glycogen concentration was assessed pre- and post-exercise. Following the soccer-specific protocol the Cunningham and Faulkner test was performed. No significant differences in post-exercise muscle glycogen concentration (PLA, 62.99 ± 8.39 mmol · kg wet weight(-1); GLU 68.62 ± 2.70; mmol · kg wet weight(-1) and MIX 76.63 ± 6.92 mmol · kg wet weight(-1)) or exercise capacity (PLA, 73.62 ± 8.61 s; GLU, 77.11 ± 7.17 s; MIX, 83.04 ± 9.65 s) were observed between treatments (P > 0.05). However, total carbohydrate oxidation was significantly increased during MIX compared with PLA (P < 0.05). These results suggest that when ingested in moderate amounts, the type of carbohydrate does not influence metabolism during soccer-specific intermittent exercise or affect performance capacity after exercise in the heat.  相似文献   

15.
The aim of this study was to assess the effect of caffeine ingestion on 8 km run performance using an ecologically valid test protocol. A randomized double-blind crossover study was conducted involving eight male distance runners. The participants ran an 8 km race 1 h after ingesting a placebo capsule, a caffeine capsule (3 mg x kg(-1) body mass) or no supplement. Heart rate was recorded at 5 s intervals throughout the race. Blood lactate concentration and ratings of perceived exertion were recorded after exercise. A repeated-measures analysis of variance (ANOVA) identified a significant treatment effect for 8 km performance time (P < 0.05); caffeine resulted in a mean improvement of 23.8 s (95% confidence interval [CI] = 13.1 to 34.5 s) in 8 km performance time (1.2% improvement, 95% CI = 0.7 to 1.8%). In addition, a two-way (time x condition) repeated-measures ANOVA identified a significantly higher blood lactate concentration 3 min after exercise during the caffeine trial (P < 0.05). We conclude that ingestion of 3 mg . kg(-1) body mass of caffeine can improve absolute 8 km run performance in an ecologically valid race setting.  相似文献   

16.
The present study elucidated the effects of habitual rowing exercise on arterial stiffness and plasma levels of the vasoconstrictor endothelin-1 and the vasodilator nitric oxide (NO) in older men. Eleven rowers (68.0 ± 1.6 years) and 11 sedentary control older men (64.9 ± 1.1 years) were studied. Peak oxygen uptake (36.0 ± 1.7 vs. 27.7 ±1.9 ml · kg(-1) · min(-1)), leg press power (1346 ± 99 vs. 1077 ± 68 W), and HDL-cholesterol (75 ± 5 vs. 58 ±3 mg · ml(-1)) were higher and triglyceride (78 ± 9 vs. 120 ± 14 mg · ml(-1)) was lower in rowers than in control participants (all P < 0.05). Arterial stiffness indices (carotid β-stiffness and cardio-ankle vascular index) and plasma endothelin-1 and NOx (nitrite + nitrate) levels did not differ between the two groups. These results suggest that habitual rowing exercise in older men is associated with high muscle power and aerobic capacity, and favourable blood lipid profile without affecting arterial stiffness or plasma levels of endotheline-1 and NO.  相似文献   

17.
This study examined effects of 4 weeks of caffeine supplementation on endurance performance. Eighteen low-habitual caffeine consumers (<75 mg · day?1) were randomly assigned to ingest caffeine (1.5–3.0 mg · kg?1day?1; titrated) or placebo for 28 days. Groups were matched for age, body mass, V?O2peak and Wmax (> 0.05). Before supplementation, all participants completed one V?O2peak test, one practice trial and 2 experimental trials (acute 3 mg · kg?1 caffeine [precaf] and placebo [testpla]). During the supplementation period a second V?O2peak test was completed on day 21 before a final, acute 3 mg · kg?1 caffeine trial (postcaf) on day 29. Trials consisted of 60 min cycle exercise at 60% V?O2peak followed by a 30 min performance task. All participants produced more external work during the precaf trial than testpla, with increases in the caffeine (383.3 ± 75 kJ vs. 344.9 ± 80.3 kJ; Cohen’s d effect size [ES] = 0.49; = 0.001) and placebo (354.5 ± 55.2 kJ vs. 333.1 ± 56.4 kJ; ES = 0.38; = 0.004) supplementation group, respectively. This performance benefit was no longer apparent after 4 weeks of caffeine supplementation (precaf: 383.3 ± 75.0 kJ vs. postcaf: 358.0 ± 89.8 kJ; ES = 0.31; = 0.025), but was retained in the placebo group (precaf: 354.5 ± 55.2 kJ vs. postcaf: 351.8 ± 49.4 kJ; ES = 0.05; > 0.05). Circulating caffeine, hormonal concentrations and substrate oxidation did not differ between groups (all > 0.05). Chronic ingestion of a low dose of caffeine develops tolerance in low-caffeine consumers. Therefore, individuals with low-habitual intakes should refrain from chronic caffeine supplementation to maximise performance benefits from acute caffeine ingestion.  相似文献   

18.
Abstract

Following fixed-duration exercise of submaximal intensity, caffeine ingestion is associated with an attenuation of the exercise-induced decline in N-formyl-methionyl-phenyl-alanine (f-MLP) stimulated neutrophil oxidative burst. However, the response following high-intensity exhaustive exercise is unknown. Nine endurance-trained male cyclists ingested 6 mg caffeine or placebo per kilogram of body mass 60 min before cycling for 90 min at 70% of maximal oxygen consumption ([Vdot]O2max) and then performing a time-trial requiring an energy expenditure equivalent to 30 min cycling at 70% maximum power output. Time-trial performance was 4% faster in the caffeine than in the placebo trial (P = 0.043). Caffeine was associated with an increased plasma adrenaline concentration after 90 min of exercise (P = 0.046) and immediately after the time-trial (P = 0.02). Caffeine was also associated with an increased serum caffeine concentration (P < 0.01) after 90 min of exercise and immediately after the time-trial, as well as 1 h after the time-trial. However, the f-MLP-stimulated neutrophil oxidative burst response fell after exercise in both trials (P = 0.002). There was no effect of caffeine on circulating leukocyte or neutrophil counts, but the lymphocyte count was significantly lower on caffeine (20%) after the time-trial (P = 0.003). Our results suggest that high-intensity exhaustive exercise negates the attenuation of the exercise-induced decrease in neutrophil oxidative burst responses previously observed when caffeine is ingested before exercise of fixed duration and intensity. This may be associated with the greater increase in adrenaline concentration observed in the present study.  相似文献   

19.
Abstract

The current study examined the effect of acute caffeine ingestion on mean and peak power production during upper body Wingate test (WANT) performance, rating of perceived exertion, readiness to invest effort and cognitive performance. Using a double-blind design, 12 males undertook upper body WANTs, following ingestion of caffeine (5?mg*kg?1) or placebo. Pre-substance ingestion, 60?mins post substance ingestion and post exercise participants completed measures of readiness to invest physical and mental effort and cognitive performance. Peak power was significantly higher (P?=?.026), fatigue index greater (P?=?.02) and rating of perceived exertion lower (P?=?.025) in the presence of caffeine. Readiness to invest physical effort was also higher (P?=?.016) in the caffeine condition irrespective of time point (pre, 60?mins post ingestion and post exercise). Response accuracy for incongruent trials on the Flanker task was superior in the presence of caffeine (P?=?.006). There was a significant substance?×?time interaction for response speed in both congruent and incongruent conditions (both P?=?.001) whereby response speeds were faster at 60?mins post ingestion and post exercise in the caffeine condition, compared to placebo. This is the first study to examine the effects of caffeine ingestion on this modality of exercise and suggests that caffeine ingestion significantly enhances peak power, readiness to invest physical effort, and cognitive performance during WANT performance.  相似文献   

20.
Scientific information about the effects of caffeine intake on combat sport performance is scarce and controversial. The aim of this study was to investigate the effectiveness of caffeine to improve Brazilian Jiu-jitsu (BJJ)-specific muscular performance. Fourteen male and elite BJJ athletes (29.2?±?3.3?years; 71.3?±?9.1?kg) participated in a randomized double-blind, placebo-controlled and crossover experiment. In two different sessions, BJJ athletes ingested 3?mg?kg?1 of caffeine or a placebo. After 60?min, they performed a handgrip maximal force test, a countermovement jump, a maximal static lift test and bench-press tests consisting of one-repetition maximum, power-load, and repetitions to failure. In comparison to the placebo, the ingestion of the caffeine increased: hand grip force in both hands (50.9?±?2.9 vs. 53.3?±?3.1?kg; respectively p?p?=?.02), and time recorded in the maximal static lift test (54.4?±?13.4 vs. 59.2?±?11.9?s; p?p?=?.02), maximal power obtained during the power-load test (750.5?±?154.7 vs. 826.9?±?163.7?W; p?p?=?.04). In conclusion, the pre-exercise ingestion of 3?mg?kg?1 of caffeine increased dynamic and isometric muscular force, power, and endurance strength in elite BJJ athletes. Thus, caffeine might be an effective ergogenic aid to improve physical performance in BJJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号