首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
方程ax~2 bx c=0的判别式△=b~2-4ac及运用判别式求解一类范围题早被人们熟知。在三角方程asinx bcosx=c中,高中代数第二册P.31给出了它的有解条件|c/(a~2 b~2)~(1/2)|≤1。我们容易从有解条件中得到a~2 b~2-c~2≥0,仿一元二次方程,我们引出符号△=a~2 b~2-c~2,并把它称为三角方程asinx bcosx=c的判别式。容易证明:方程asinx bcosx=c,x∈[0,2π),当 i)△>0时,有两不等实根;ii)△=0时,有唯一实根;iii)△<0时,无实根。 u=cosx, 略证如下{ x∈[0,2π) v=sinx,  相似文献   

2.
一元二次方程ax2+bx+c=0要求a≠0,有实数根时要求判别式△≥0.但同学们在解一元二次方程的有关问题时常忽视这些隐含条件,现举例如下:  相似文献   

3.
我们知道,对于实系数一元二次方程ax^2+bx+c=0,其根的判别式为△=b^2-4ac,当△〉0时,方程有2个不相等的实数根;当△=0时,方程有2个相等的实数根;当△〈0时,方程没有实数根.所以有关一元二次方程或能转化为一元二次方程的题目,可以考虑用判别式法.  相似文献   

4.
分析错解中采用联立方程组并用了韦达定理,但韦达定理仅仅是二次方程有解的一个必要条件,还需考虑其判别式△〉0,故将k=2代入  相似文献   

5.
一元二次方程ax2 +bx +c =0(a≠0)根的判别式是b2-4ac,通常用符号"△"来表示.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;反之也成立.判别式不仅用来判断一元二次方程根的情况,也可以解决其他数学问题.一、求字母的值 例1 (2012年广州卷)已知关于x的一元二次方程x2-2√3x+k=0有两个相等的实数根,则k的值为____. 解:∵方程x2-2√3x+k=0有两个相等的实数根,∴△=(-2√3)2-4k=0. ∴12-4k=0,解得k=3.故填3. 温馨小提示:这是判别式的典型应用.我们要熟记判别式值的正负与根的个数之间的关系.  相似文献   

6.
判别式法是解决一元二次方程,以及能转化为一元二次方程类型问题的常用方法,即抓住方程有实数解的实质,逆用判别式△=b2-4ac解决相关问题.下面列举求解不等式问题的几种类型,并举例分析,供参考。  相似文献   

7.
正如一元二次方程根的判别式可用于求某些函数的最值一样。三角方程asinx+bcosx+c=0如下根的判别式也可方便地用于求一些函数的最值,这一点未引起人们应有的重视.△=a~2+b~2-c~2,若△>0.则方程有两个不同的实数解(把终边相同的角看作同一个解,下同);若△=0,则方程有两个相同的实数解;  相似文献   

8.
在根据已知条件确定一元二次方程的根或待定系数的问题中,往往要综合运用根与系数的关系和判别式等有关知识。用判别式的目的在于指出方程在实数范围内有解时,字母系数的取值范围。但有的这类问题又不需要用到判别式,那么怎样才能正确地使用它们解决问题呢? 首先,我们对定理要熟悉和理解: 1.一元二次方程ax~2 bx c=0(a≠0)根的判别式△=b~2-4ac △>0方程有两个不等的实数根; △=0方程有两个相等的实数根;  相似文献   

9.
<正> 关于一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac,我们知道有三个方面的应用: 1.不解方程,判别一元二次方程根的情况; 2.证明一元二次方程有无实数根; 3. 根据方程根的条件,求方程中待定系数的值. 我们在解与实数根相关的问题时,也常常使用“△”,但又常常被  相似文献   

10.
本刊1985年第7期郑慧修《两根为正余弦的二次方程》一文,谈到这样一类问题:已知方程x~2+px+q=0有形如cosα,sinα的两个根,其中p与q与参数m有关的量,要确定参数m的值.该文认为,只利用三角函数间的关系和韦达定理来解这类问题是错误的,必须还要考虑判别式△≥0这一条件.我们认为利用韦达定理来解这类问题是正确的方法,无须再考虑△≥0这一条件.事实  相似文献   

11.
大家都知道,二次方程ax~2+bx+c=0…①的根与判别式△=b~2-4ac的关系:△>0圳①有两个不等实根;△=0圳①有两个相等实根;△<0圳①没有实根.“运用之妙,存乎一心”.判别式看似简单,实在神通广大,请看数例:例1已知ba+ca=1,求证:b2+4ac≥0.分析已知式可整理为a-b-c=0,由此可知方程ax2-bx-c=0有根x=1,所以△=(-b)2-4a(-c)≥0,即b2+4ac≥0.例2求正整数n,使28+211+2n为完全平方数.分析设x=24,原式就是x2+27·x+2n,要使它是完全平方数只要△=(27)2-4·1·2n=0,可解得n=12.例3求二次函数y=ax2+bx+c的最值.分析本题可用配方法解,也可以用判别式解决.函…  相似文献   

12.
一元二次方程ax~2+bx+c=0(a≠0)有实根的充要条件是判别式△=b~2-4ac≥0,这里a、b、c是与未知数x无关的常数,对于象 1.求x~2+2xsin(xy)+1=0的一切实数解. 2.求x~2-2xsin(π/2)x+1=0的所有实根. 3.证明2sinx=5x~2+2x+3无实数解. 之类问题,是不是也可以应用类似的判别式来解呢?直接应用一元二次方程的根的判别式来解是缺乏理论根据的,本文给出这类问题的一般形式  相似文献   

13.
解决与判别式相关问题时,我们往往难于审时度势地利用判别式而导致失误.本文通过相关典型例题解的成败给以评说,以便从宏观上指导我们解题思维的形成.避免在解题过程中出现决策性失误.一、判别式的迷惑在解决涉及与一元二次方程根相关问题时,往往在方法决策时,不加思考的就选择使用判别式.真所谓:“不识庐山真面目,只缘身在此山中”.而最终导致迷惑.【例1】 若椭圆x2+4(y-a)2 =4与抛物线x2 =2y有公共点,求实数a的取值范围.误解:x2 +4(y - a)2 =4x2 =2y得 2y2 + (1-4a)y+2a-2=0  ①即Δ= (1-4a)2 -16(a -1)≥0∴a≤178简评:“Δ≥0”…  相似文献   

14.
一元二次方程ax2 bx c=0(a≠0),当x∈R时,当且仅当△=b2-4ac≥0,判别式法在数学解题中有着广泛应用,但学生往往忽视它成立的三个条件;x∈R;a≠0;实系数;否则将会出现错误,下面分类说明. 条件一 x∈R. 例1 方程sin2x-2asinx 3a=0有解,求a的取值范围.  相似文献   

15.
1判别式的“前世今生” 实系数一元二次方程ax^2+bx+c=0(a≠0)有实数根的充要条件是其判别式△=b^2-4ac≥0,根据一元二次方程的这一性质,我们常可根据题设条件构造一个二次方程,利用判别式间接求解,它在求函数值域(或最值),证明不等式,圆锥曲线、三角函数、数列等问题上有广泛应用[1].用判别式解题的方法,姑且称之为判别式法.这种方法在中学里历经坎坷,让学生接受并能灵活运用并非易事.  相似文献   

16.
判别式在整个中学数学中占有十分重要的地位,特别是在函数与解析几何中表现得更为突出,然而在使用的过程中往往出错.常见的错误是误用或漏用:判别式定理 实系数一元二次方程ax~2 bx-c=0在实数集内有解的充要条件是△=b~2-4ac≥0.  相似文献   

17.
实系数一元二次方程 ax2 + bx+ c=0 ( a≠ 0 )的判别式 Δ=b2 - 4ac是中学数学中的基本内容 ,它在代数和几何中都有着广泛的应用 .下面让我们举些实例 ,说明判别式在解一类平面几何题中的应用 ,以供同行交流参考 .1 判别三角形形状例 1 设△ABC的三边为 a,b,c,并满足 b+ c=4 ,bc=a2 - 6 a+ 1 3,试问△ ABC是什么三角形 ?并证明你的结论 .解 由题意得 b,c是一元二次方程 x2 -4x+ ( a2 - 6 a+ 1 3) =0的两个实数根 ,∴Δ =4 2 - 4( a2 - 6 a+ 1 3)=- 4( a- 3) 2 ≥ 0 .∴ a=3,代入方程得 x2 - 4x+ 4 =0 .∴△ ABC为等腰三角形 .例 2 …  相似文献   

18.
求直线y=kx h与抛物线y=ax~2 bx c的切点坐标,需要解方程组 y=ax~2 bx c, y=kx h. 此方程组有没有解?如果有解,又有几解?这是直线与抛物线的位置关系问题.这个问题可通过以下方法解决: y=ax~2 bx c, y=kx h ax~2 bx c=kx h ax~2 (b-k)x (c-h)=0. 其判别式为△′0=(b-k)~2-4a(c-h). ①△′>0 直线与抛物线相交,设交点为 A(x_1,y_1),B(x_2,y_2);  相似文献   

19.
不等关系是高中数学研究的重要方面 ,也是各级各类考试必考的内容 .不等关系的引进又是令人颇感疑难的问题 .下面笔者就根据自己的多年从教经验 ,谈谈在数学解题中如何引进不等关系 ,从而顺利解题 .1 判别式法应用方程的数学思想将题目的条件转化为一元二次方程是否有解的问题去解决 ,即根据一元二次方程ax2 bx c =0有解的条件Δ≥ 0 ,从而引进不等关系 .例 1 已知抛物线y =ax2 -1上存在关于直线l:x y =0成轴对称的 2点 ,试求实数a的取值范围 .解 设抛物线上关于直线l对称的两相异点P(x1 ,y1 )、Q(x2 ,y2 ) ,线段PQ中点为M (x0 ,y0 …  相似文献   

20.
下题是我们在学习一元二次方程的根的判别式时所常见的: 如果m为有理数,试确定k值,使方程x~2-2mx+10x+4k=0的根是有理数。拿到题目后,有的同学可能会这样解吧! 解原方程即x~2+(10-2m)x+4k=0,要使它的根是有理数,只需其根的判别式△=(10-2m)~2-16k=100-40m+4m~2-16k=4(m~2-10m+25-4k) ①是完全平方式,即m~2-10m+25-4k=0有相等的根,即以m为元的此二次方程的判别式△′=100-4(25-4k)=0,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号