首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Ankle sprains are the most common injury in regular badminton players and usually occur at the end of a match or training. The purpose of the present study was to examine the influence of fatigue produced by badminton practice on the lower limb biomechanics of badminton players. It was hypothesized that fatigue induces ankle kinematic and lower leg muscle activity changes which may increase the risk of ankle sprain. Ankle kinematics, ankle kinetics and muscles activities of 17 regular badminton players were recorded during lateral jumps before and after an intense badminton practice session. Post-fatigue, ankle inversion at foot strike and peak ankle inversion increased (+2.6°, p = 0.003 and +2.5°, p = 0.005, respectively). EMG pre-activation within 100 ms before foot landing significantly decreased after fatigue for soleus (?23.4%, p = 0.031), gastrocnemius lateralis (?12.2%, p = 0.035), gastrocnemius medialis (?23.3%, p = 0.047) and peroneus brevis (?17.4%, p = 0.036). These results demonstrate impaired biomechanics of badminton players when fatigue increases, which may cause a greater risk of experiencing an ankle sprain injury.  相似文献   

2.
This study assessed kinematic differences between different foot strike patterns and their relationship with peak vertical instantaneous loading rate (VILR) of the ground reaction force (GRF). Fifty-two runners ran at 3.2 m · s?1 while we recorded GRF and lower limb kinematics and determined foot strike pattern: Typical or Atypical rearfoot strike (RFS), midfoot strike (MFS) of forefoot strike (FFS). Typical RFS had longer contact times and a lower leg stiffness than Atypical RFS and MFS. Typical RFS showed a dorsiflexed ankle (7.2 ± 3.5°) and positive foot angle (20.4 ± 4.8°) at initial contact while MFS showed a plantar flexed ankle (?10.4 ± 6.3°) and more horizontal foot (1.6 ± 3.1°). Atypical RFS showed a plantar flexed ankle (?3.1 ± 4.4°) and a small foot angle (7.0 ± 5.1°) at initial contact and had the highest VILR. For the RFS (Typical and Atypical RFS), foot angle at initial contact showed the highest correlation with VILR (r = ?0.68). The observed higher VILR in Atypical RFS could be related to both ankle and foot kinematics and global running style that indicate a limited use of known kinematic impact absorbing “strategies” such as initial ankle dorsiflexion in MFS or initial ankle plantar flexion in Typical RFS.  相似文献   

3.
Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2–14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: ?9.9 ± 0.9, hFF-FFS: ?9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one’s SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.  相似文献   

4.
Background: Excessive vertical impacts at landing are associated with common running injuries. Two primary gait-retraining interventions aimed at reducing impact forces are transition to forefoot strike and increasing cadence. The objective of this study was to compare the shortand long-term effects of 2 gait-retraining interventions aimed at reducing landing impacts.Methods: A total of 39 healthy recreational runners using a rearfoot strike and a cadence of 170 steps/min were randomized into cadence(CAD) or forefoot strike(FFS) groups. All participants performed 4 weeks of strengthening followed by 8 sessions of gait-retraining using auditory feedback. Vertical average load rates(VALR) and vertical instantaneous load rates(VILR) were calculated from the vertical ground reaction force curve. Both cadence and foot strike angle were measured using 3D motion analysis and an instrumented treadmill at baseline and at 1 week,1 month, and 6 months post retraining.Results: ANOVA revealed that the FFS group had significant reductions in VALR(49.7%) and VILR(41.7%), and changes were maintained long term. Foot strike angle in the FFS group changed from 14.2° dorsiflexion at baseline to 3.4° plantarflexion, with changes maintained long term. The CAD group exhibited significant reduction only in VALR(16%) and only at 6 months. Both groups had significant and similar increases in cadence at all follow-ups(CAD, +7.2% to 173 steps/min;and FFS, +6.1% to 172 steps/min).Conclusion: Forefoot strike gait-retraining resulted in significantly greater reductions in VALR and similar increases in cadence compared to cadence gait-retraining in the short and long term. Cadence gait-retraining resulted in small reductions in VALR at only the 6-month follow-up.  相似文献   

5.
This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon® motion capture and Novel® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (?38.2°±2.4° for athletes and ?11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).  相似文献   

6.
The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6?min?mile?1) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.  相似文献   

7.
This study aimed to evaluate the test–retest reliability of a new device for assessing ankle joint kinesthesia. This device could measure the passive motion threshold of four ankle joint movements, namely plantarflexion, dorsiflexion, inversion and eversion. A total of 21 healthy adults, including 13 males and 8 females, participated in the study. Each participant completed two sessions on two separate days with 1-week interval. The sessions were administered by the same experimenter in the same laboratory. At least 12 trials (three successful trials in each of the four directions) were performed in each session. The mean values in each direction were calculated and analysed. The ICC values of test–retest reliability ranged from 0.737 (dorsiflexion) to 0.935 (eversion), whereas the SEM values ranged from 0.21° (plantarflexion) to 0.52° (inversion). The Bland–Altman plots showed that the reliability of plantarflexion–dorsiflexion was better than that of inversion–eversion. The results evaluated the reliability of the new device as fair to excellent. The new device for assessing kinesthesia could be used to examine the ankle joint kinesthesia.  相似文献   

8.
Abstract

The purpose of this study was to investigate changes in ankle joint stiffness and the associated changes in the gastrocnemius muscle and tendon due to static stretching. Seven healthy male participants lay supine with the hip and knee joints fully extended. The right ankle joint was rotated into dorsiflexion from a 30° plantar flexed position and the torque measured by a dynamometer. The ankle joint was maintained in a dorsiflexed position for 20 min (static stretching of the calf muscles). We performed surface electromyography of the medial and lateral gastrocnemii, the soleus, and the tibialis anterior of the right leg to confirm no muscle activity throughout static stretching and the passive test (passive dorsiflexion). During static stretching, the ankle joint angle and elongation of the gastrocnemius were recorded by goniometry and ultrasonography, respectively. Tendon elongation of the gastrocnemius was calculated based on the changes in the ankle joint angle and muscle elongation. In addition, the relationships between passive torques and ankle joint angles, and elongation of muscle and tendon, were examined before and after static stretching. The ankle dorsiflexion angle and tendon elongation increased significantly by 10 min after the onset of static stretching, while there was no further increase in muscle length. In addition, ankle dorsiflexion angle and tendon elongation at an identical passive torque (30 N · m) increased significantly (from 24±7° to 33±5° and from 17±2 mm to 22±1 mm, respectively) after static stretching. However, muscle elongation was unchanged. In conclusion, the current results suggest that an increase in the ankle joint dorsiflexion angle due to static stretching is attributable to a change in tendon not muscle stiffness.  相似文献   

9.
PurposeThe globalisation of artificial turf and the increase in player participation has driven the need to examine injury risk in the sport of football. The purpose of this study was to investigate the surface–player interaction in female football players between natural and artificial turf.MethodsEight university level female football players performed an unanticipated cutting manoeuvre at an angle of 30° and 60°, on a regulation natural grass pitch (NT) and a 3G artificial turf pitch (AT). An automated active maker system (CodaSport CXS System, 200 Hz) quantified 3D joint angles at the ankle and knee during the early deceleration phase of the cutting, defined from foot strike to weight acceptance at 20% of the stance phase. Differences were statistically examined using a two-way (cutting angle, surface) ANOVA, with an α level of p < 0.05 and Cohen's d effect size reported.ResultsA trend was observed on the AT, with a reduction in knee valgus and internal rotation, suggesting a reduced risk of knee injury. This findings highlight that AT is no worse than NT and may have the potential to reduce the risk of knee injury. The ankle joint during foot strike showed large effects for an increase dorsiflexion and inversion on AT. A large effect for an increase during weight acceptance was observed for ankle inversion and external rotation on AT.ConclusionThese findings provide some support for the use of AT in female football, with no evidence to suggests that there is an increased risk of injury when performing on an artificial turf. The ankle response was less clear and further research is warranted. This initial study provides a platform for more detailed analysis, and highlights the importance of exploring the biomechanical changes in performance and injury risk with the introduction of AT.  相似文献   

10.
Ballerinas use their ankle joints more extremely and sustain injuries on the ankle joint more frequently than non-dancers. Therefore, the ankle movement of dancers is important and should be studied to prevent injuries. Measuring ankle joint range of motion (ROM) using radiographs could demonstrate the contribution to motion of each joint. The aim of this study was to analyse and compare ankle joint movements and the ratio of each joint’s contribution during movement between dancers and non-dancers, using radiographic images. Dancers have lower dorsiflexion (26.7 ± 6.2°), higher plantarflexion (74.3 ± 7.1°) and higher total (101.1 ± 10.8°) ROMs than non-dancers (33.9 ± 7.0°, 57.2 ± 6.8° and 91.1 ± 9.3°, respectively) (p < 0.05). Although the ROMs were different between the two groups, the ratios of each joint movement were similar between these two groups, in all movements. Regarding total movement, the movement ratio of the talocrural joint was almost 70% and other joints accounted for almost 30% of the movement role in both dancers and non-dancers. Therefore, the differences in ROM between dancers and non-dancers were not a result of a specific joint movement but of all the relevant joints’ collaborative movement.  相似文献   

11.
PurposeThis study examined variation in foot strike types, lower extremity kinematics, and arch height and stiffness among Tarahumara Indians from the Sierra Tarahumara, Mexico.MethodsHigh speed video was used to study the kinematics of 23 individuals, 13 who habitually wear traditional minimal running sandals (huaraches), and 10 who habitually wear modern, conventional running shoes with elevated, cushioned heels and arch support. Measurements of foot shape and arch stiffness were taken on these individuals plus an additional sample of 12 individuals.ResultsMinimally shod Tarahumara exhibit much variation with 40% primarily using midfoot strikes, 30% primarily using forefoot strikes, and 30% primarily using rearfoot strikes. In contrast, 75% of the conventionally shod Tarahumara primarily used rearfoot strikes, and 25% primarily used midfoot strikes. Individuals who used forefoot or midfoot strikes landed with significantly more plantarflexed ankles, flexed knees, and flexed hips than runners who used rearfoot strikes. Foot measurements indicate that conventionally shod Tarahumara also have significantly less stiff arches than those wearing minimal shoes.ConclusionThese data reinforce earlier studies that there is variation among foot strike patterns among minimally shod runners, but also support the hypothesis that foot stiffness and important aspects of running form, including foot strike, differ between runners who grow up using minimal versus modern, conventional footwear.  相似文献   

12.
Abstract

Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.  相似文献   

13.
研究背景:现有研究文献尚无有关在着地过程中不同表面倾斜度和踝关节护具效应的运动学、动力学和地面反作用力的综合数据。通过对比25°斜面和平面的着地以及使用和不使用踝关节护具情况下来检测踝关节的生物力学特性。研究方法: 11名健康受试者[年龄:(24.6±3.5)岁,身高:(24.6±0.10)m,质量:(65.6±14.9)kg)参与本次研究。受试者在4个动态运动条件下各进行5五次实验:从0.45米高处垂直下落至25°的斜面(IS)或平面(FS)上,使用或不使用半刚性踝关节护具,同时采集三维运动学和测力台地面反作用力数据。利用2×2(表面X踝关节护具)的重复测量方差分析来评估选定的变量。研究结果:与平面着地相比,斜面着地造成较小的垂直和内侧地面反作用力峰值。研究还发现踝关节背曲运动范围、着地角度和背曲速度、最大外翻与跖曲角速度提高,但产生了更大内翻角度和运动范围、着地内翻速度和最大跖曲力矩。踝关节护具在斜面着地时减少了达到地面反作用力第二垂直峰值的时间、着地角度、背曲速度、最大外翻和跖曲速度,但增加了跖曲力矩的最大值。研究结论:斜面增加踝关节额状面的运动范围和踝关节负荷。但是,就斜面着地而言,踝关节护具对踝关节额状面的运动范围和踝关节负荷的影响是相当有限的。  相似文献   

14.
In football, kicking with high ball velocity can increase scoring opportunities and reduce the likelihood of interception. Efficient energy transfer from foot to ball during impact is important to attain a high ball velocity. It is considered impact efficiency can be increased by reducing the change in ankle plantarflexion during foot–ball impact. However, conflicting evidence exists, questioning its effectiveness as a coaching cue. The aim of the present study was to systematically analyse joint stiffness, foot velocity and impact location with a mechanical kicking machine to determine if change in ankle plantarflexion during foot–ball impact and ball velocity are influenced. Sagittal plane data of the shank, foot and ball were measured using high-speed video (4,000 Hz). Increasing joint stiffness reduced change in ankle plantarflexion and increased ball velocity from a greater effective mass. Increasing foot velocity increased change in ankle plantarflexion and increased ball velocity. Distal impact locations increased change in ankle plantarflexion and reduced ball velocity as coefficient of restitution decreased. These results identify that change in ankle plantarflexion is a dependent variable during foot–ball impact and does not directly influence ball velocity. Coaches can assess ankle motion during impact to provide feedback to athletes on their impact efficiency.  相似文献   

15.
BackgroundPrevious studies of foot strike patterns of distance runners in road races have typically found that the overwhelming majority of shod runners initially contact the ground on the rearfoot. However, none of these studies has attempted to quantify foot strike patterns of barefoot or minimally shod runners. This study classifies foot strike patterns of barefoot and minimally shod runners in a recreational road race.MethodsHigh-speed video footage was obtained of 169 barefoot and 42 minimally shod distance runners at the 2011 New York City Barefoot Run. Foot strike patterns were classified for each runner, and frequencies of forefoot, midfoot, and rearfoot striking were compared between the barefoot and minimally shod groups.ResultsA total of 59.2% of barefoot runners were forefoot strikers, 20.1% were midfoot strikers, and 20.7% were rearfoot strikers. For minimally shod runners, 33.3% were forefoot strikers, 19.1% were midfoot strikers, and 47.6% were rearfoot strikers. Foot strike distributions for barefoot and minimally shod runners were significantly different both from one another and from previously reported foot strike distributions of shod road racers.ConclusionFoot strike patterns differ between barefoot and minimally shod runners, with forefoot striking being more common, and rearfoot striking less common in the barefoot group.  相似文献   

16.
ABSTRACT

While foot orthoses are commonly used in running, little is known regarding biomechanical risk potentials during uphill running. This study investigated the effects of arch-support orthoses on kinetic and kinematic variables when running at different inclinations. Sixteen male participants ran at different inclinations (0°, 3° and 6°) when wearing arch-support and flat orthoses on an instrumented treadmill. Arch-support orthoses induced longer contact time, larger initial ankle dorsiflexion, maximum ankle eversion, and knee sagittal range of motion (RoM) (p < 0.05). As incline slopes increased, vertical impact peak and loading rate, stride length, and ankle coronal RoM decreased, but contact time, stride frequency, initial ankle dorsiflexion and inversion, maximum dorsiflexion, initial knee flexion, and ankle sagittal RoM increased (p < 0.05). Furthermore, knee sagittal RoM was lowest when running at an inclination of 3°. The interaction effect indicated that in arch-support condition, participants running at 6° induced higher maximum ankle eversion than running at 0° (p < 0.05), while no differences were found in flat orthosis condition. These findings suggest that the use of arch-support orthoses would influence running biomechanics that is related to injury risks. Running at higher inclination led to more alterations to biomechanical variables than at lower inclination.  相似文献   

17.
BackgroundInvestigations of running gait among barefoot and populations have revealed a diversity of foot strike behaviors, with some preferentially employing a rearfoot strike (RFS) as the foot touches down while others employ a midfoot strike (MFS) or forefoot strike (FFS). Here, we report foot strike behavior and joint angles among traditional Hadza hunter-gatherers living in Northern Tanzania.MethodsHadza adults (n = 26) and juveniles (n = 14) ran at a range of speeds (adults: mean 3.4 ± 0.7 m/s, juveniles: mean 3.2 ± 0.5 m/s) over an outdoor trackway while being recorded via high-speed digital video. Foot strike type (RFS, MFS, or FFS) and hind limb segment angles at foot strike were recorded.ResultsHadza men preferentially employed MFS (86.7% of men), while Hadza women and juveniles preferentially employed RFS (90.9% and 85.7% of women and juveniles, respectively). No FFS was recorded. Speed, the presence of footwear (sandals vs. barefoot), and trial duration had no effect on foot strike type.ConclusionUnlike other habitually barefoot populations which prefer FFS while running, Hadza men preferred MFS, and Hadza women and juveniles preferred RFS. Sex and age differences in foot strike behavior among Hadza adults may reflect differences in running experience, with men learning to prefer MFS as they accumulate more running experience.  相似文献   

18.
BackgroundForefoot strike (FFS) and rearfoot strike (RFS) runners differ in their kinematics, force loading rates, and joint loading patterns, but the timing of their muscle activation is less clear.MethodsForty recreational and highly trained runners ran at four speeds barefoot and shod on a motorized treadmill. “Barefoot” runners wore thin, five-toed socks and shod runners wore neutral running shoes. Subjects were instructed to run comfortably at each speed with no instructions about foot strike patterns.ResultsEleven runners landed with an FFS when barefoot and shod and eleven runners landed with an RFS when barefoot and shod. The 18 remaining runners shifted from an FFS when barefoot to an RFS when shod (shifters). Shod shifters ran with a lower stride frequency and greater stride length than all other runners. All FFS runners landed with more plantarflexed ankles and more vertical lower legs at the beginning of stance compared to RFS runners. FFS runners activated their plantarflexor muscles 11% earlier and 10% longer than RFS runners.ConclusionThis earlier and longer relative activation of the plantarflexors likely enhances the capacity for the passive structures of the foot and ankle to store elastic energy, and may also enhance the performance of the active muscle by increasing the storage of elastic strain energy in the cross-bridges and activated titin.  相似文献   

19.
Soccer kicking training should be adjusted to the characteristics of the athletes. Therefore, examination of differences in kicking kinematics of females and pubertal players relative to males is worthwhile. The purpose of the study was to compare kicking kinematics and segmental sequence parameters between male, female, and pubertal players. Ten adult male, ten adult female, and ten male pubertal players participated in the study. Participants performed five consecutive kicking trials of a stationary ball, as powerful as they could. Analysis of variance showed significantly higher ball velocity, higher joint linear velocities for the knee and the hip, and higher angular velocities of the knee and the ankle for males compared to female and pubertal players (p < 0.05). Similarly, the peak joint velocity was achieved significantly closer to ball impact in males compared to other groups (p < 0.05). Males also showed a more plantarflexed ankle immediately before ball impact (p < 0.05). Females and pubertal players may benefit from skill training aiming to increase ankle plantarflexion and hip flexion prior to ball impact, and to adjust thigh and shank motion, such that the shank–foot segment travels through a higher range of motion and with a greater velocity.  相似文献   

20.
ABSTRACT

This study aimed to explore the plantar loading variables between habitual rearfoot strike (RFS) and non-rearfoot strike (NRFS) during running. 78 healthy males participated in this study (41 RFS, 37 NRFS). In-shoe pressure sensors were used to measure plantar loading while the participants were running on a 15 m indoor runway with their preferred foot strike pattern (FSP) at 12.0 ± 5% km/h. Results indicate that force and pressure parameters were much higher in the rearfoot and midfoot regions during RFS running and relatively greater in forefoot region during NRFS running. However, compared with NRFS running, the contact area, maximum force and force-time-integrals during RFS running on total foot were 21.44% (P < 0.001, ES = 2.29), 13.99% (P = 0.006, ES = 0.64) and 21.27% (P < 0.001, ES = 0.85) higher, respectively. Total foot peak pressure and pressure-time-integral between two FSPs were similar. Higher loads in the rearfoot region may transmit to the knee joint and result in patellofemoral joint injuries. NRFS runners’ higher loads in forefoot seem to be ralated to metatarsal stress fractures and compensatory damage to the Achilles tendon. Therefore, runners should choose proper FSPs according to their unique physical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号