共查询到20条相似文献,搜索用时 11 毫秒
1.
A. J. “Knoek” van Soest H. de Koning M.J. Hofmijster 《Journal of sports sciences》2016,34(17):1643-1649
In this study, the effect of strapping rowers to their sliding seat on performance during 75 m on-water starting trials was investigated. Well-trained rowers performed 75 m maximum-effort starts using an instrumented single scull equipped with a redesigned sliding seat system, both under normal conditions and while strapped to the sliding seat. Strapping rowers to their sliding seat resulted in a 0.45 s lead after 75 m, corresponding to an increase in average boat velocity of about 2.5%. Corresponding effect sizes were large. No significant changes were observed in general stroke cycle characteristics. No indications of additional boat heaving and pitching under strapped conditions were found. The increase in boat velocity is estimated to correspond to an increase in average mechanical power output during the start of on-water rowing between 5% and 10%, which is substantial but smaller than the 12% increase found in a previous study on ergometer starting. We conclude that, after a very short period of adaptation to the strapped condition, single-scull starting performance is substantially improved when the rower is strapped to the sliding seat. 相似文献
2.
High retest reliability is desirable in tests used to monitor athletic performance, but the reliability of many popular tests has not been established. The aim of this study was to determine the reliability of performance of a 2000-m time-trial lasting approximately 7 min performed on a Concept II rowing ergometer. Eight well-trained rowers (peak oxygen uptake 61+/-5 ml x kg(-1) x min(-1); mean +/- standard deviation) performed the time-trials on three occasions at 3-day intervals. Mean power (313+/-38 W in trial 1) improved by 2.3% (95% confidence interval 0.1 to 4.5%) in trial 2 and by a further 0.9% (-1.4 to 3.3%) in trial 3. The variability of performance for individual rowers expressed as a coefficient of variation for mean power was 2.0% (1.3 to 3.1%), and the retest correlation was 0.96 (0.87 to 0.99). Variability and changes in performance expressed as time to complete the test were approximately one-third those of mean power, apparently because simulated velocity is proportional to the cube root of power on this ergometer. Such high reliability makes this combination of ergometer, athlete and test protocol very suitable for monitoring rowing performance and for investigating factors that affect performance in short, high-intensity endurance events. 相似文献
3.
《European Journal of Sport Science》2013,13(4):263-268
Abstract The aim of this investigation was to determine the effect on rower posture of raising the stretchers. Nine male university rowers completed a single 30-s trial at each of three stretcher heights on an ergometer, at 30 strokes min?1. The first ten strokes with complete data were averaged and data for four time points during the stroke extracted: catch, mid-drive, finish, and mid-recovery. Ankle angle was shown to increase significantly at all points during the stroke (P<0.01) as the stretchers were raised. Knee angle was only significantly increased into a more extended posture at mid-drive (P<0.05) and mid-recovery (P<0.01) for the higher stretcher positions, hip angle was significantly reduced into a more flexed posture at the catch (P<0.05) and at mid-recovery (P<0.05), and the trunk was significantly extended at the catch (P<0.01), finish (P<0.01), and mid-recovery (P<0.05) as the stretchers were raised. Our results show that the increase in stretcher height caused the rower's body to rotate posteriorly in the sagittal plane. This we suggest reduced the vertical component of stretcher force, thus achieving a more mechanically effective position, which could have led to the slower rate of fatigue reported previously for the two raised stretcher positions (Caplan & Gardner, 2005). The increased flexion of the hip should not be ignored, however, as this may lead to overstretching of the hip extensors if the stretchers are raised too high. Further research is required to determine the extent to which the stretchers can be raised in on-water rowing. 相似文献
4.
Idan Harat Nicolas W. Clark David Boffey Chad H. Herring Erica R. Goldstein Michael J. Redd 《Journal of sports sciences》2020,38(14):1615-1623
ABSTRACT Post-activation potentiation likely acutely improves power-based performance; however, few studies have demonstrated improved endurance performance. Forty collegiate female rowers performed isometric potentiating (ISO), dynamic potentiating (DYN) and control (CON) warm-up protocols on a rowing ergometer, followed by a three-minute all-out test to evaluate their total distance, peak power, mean power, critical power, anaerobic working capacity (W’) and stroke rate. Fifteen-second splits were also analysed. ISO consisted of 5 × 5-second static muscle actions with the ergometer handle rendered immovable with a nylon strap, while DYN consisted of 2 × 10-second all-out rowing bouts, separated by a 2-minute rest interval. The participants were divided into high and low experience groups by median experience level (3.75 years) for statistical analysis. Significant differences (DYN > CON; p < 0.05) were found for distance (+5.6 m), mean power (+5.9 W) and W’ (+1561.6 J) for more experienced rowers (n = 19) and no differences for less experienced rowers (n = 18). Mean power in DYN was significantly greater than CON and ISO in the 15–30, 30–45, 45–60 and 60–75 second intervals independent of experience level. These results suggest that DYN may benefit experienced female rowers and that these strategies might benefit a greater power output over shorter distances regardless of experience. 相似文献
5.
Fiona Wilson John Gormley Conor Gissane Ciaran Simms 《Journal of sports sciences》2013,31(14):1481-1489
Abstract Lumbar spine injury is common in rowers and examination of spinal kinematics may improve the understanding of this injury's prevalence. This study aimed to examine the range of frontal plane angular displacement (AD) in the lumbar spine at L3 during ergometer rowing and to investigate the effect of exhaustion on lumbar kinematics. Twelve elite male rowers completed an incremental test on a Concept 2 ergometer. Lumbar AD at L3 was measured continually throughout the rowing trial using a Spectrotilt Inclinometer and blood lactate was sampled at 3-minute intervals. AD of between 4.7° and 8.8° was recorded at L3. There was a significant increase in AD between the first and last stage of the test (mean increase = 4.1 ± 1.94°, 95% Confidence Interval [CI], 2.9 to 5.3°, t = 7.36, P = 0.000014). Incremental rise in AD was associated with an incremental rise in blood lactate but regression confirmed that only stroke rate was a significant predictor for increasing angle. Thus there is a statistically significant increase in frontal plane AD at L3 over the course of an incremental exercise test although it cannot be confirmed if this is as a result of exhaustion. The values of AD confirm that there is motion in the frontal plane in ergometer rowing. 相似文献
6.
The swimming start is typically broken into three sub-phases; on-block, flight, and underwater phases. While overall start performance is highly important to elite swimming, the contribution of each phase and important technical components within each phase, particularly with the new kick-start technique, has not been established. The aim of this study was to identify technical factors associated with overall start performance, with a particular focus on the underwater phase. A number of parameters were calculated from 52 starts performed by elite freestyle and butterfly swimmers. These parameters were split into above-water and underwater groupings, before factor analysis was used to reduce parameter numbers for multiple regression. For the above-water phases, 81% of variance in start performance was accounted for by take-off horizontal velocity. For the underwater water phase, 96% of variance was accounted for with time underwater in descent, time underwater in ascent and time to 10 m. Therefore, developing greater take-off horizontal velocity and focussing on the underwater phase by finding the ideal trajectory will lead to improved start performance. 相似文献
7.
In 19 elite schoolboy rowers, the relationships between anthropometric characteristics, metabolic parameters, strength variables and 2000-m rowing ergometer performance time were analysed to test the hypothesis that a combination of these variables would predict performance better than either individual variables or one category of variables. Anthropometric characteristics, maximal oxygen uptake (V O 2m ax ), accumulated oxygen deficit, net efficiency, leg strength and 2000-m rowing ergometer time were measured. Body mass, V O 2max and knee extension correlated with 2000-m performance time (r = -0.41, -0.43 and-0.40, respectively; P 0.05), while net efficiency and accumulated oxygen deficit did not. Multiple-regression analyses indicated that the prediction model using anthropometric variables alone best predicts performance (R = 0.82), followed by the equation comprising body mass, V O 2max and skinfolds (R = 0.80). Although the regression equations increased the predictive power from that obtained using single variables, the hypothesis that a prediction model consisting of variables from different physiological categories would predict performance better than variables from one physiological category was not supported. 相似文献
8.
Andrew J. Greene Michael H. Dickson Floren Colloud Richard M. Smith 《Sports biomechanics / International Society of Biomechanics in Sports》2013,12(4):302-317
The effect of anthropometric differences in shank to thigh length ratio upon timing and magnitude of joint power production during the drive phase of the rowing stroke was investigated in 14 elite male rowers. Rowers were tested on the RowPerfect ergometer which was instrumented at the handle and foot stretcher to measure force generation, and a nine segment inverse dynamics model used to calculate the rower's joint and overall power production. Rowers were divided into two groups according to relative shank thigh ratio. Time to half lumbar power generation was significantly earlier in shorter shank rowers (p = 0.028) compared to longer shank rowers, who showed no lumbar power generation during the same period of the drive phase. Rowers with a relatively shorter shank demonstrated earlier lumbar power generation during the drive phase resulting from restricted rotation of the pelvic segment requiring increased lumbar extension in these rowers. Earlier lumbar power generation and extension did not appear to directly affect performance measures of the short shank group, and so can be attributed to a technical adaptation developed to maximise rowing performance. 相似文献
9.
Pavle Mikulić Tomislav Smoljanović Ivan Bojanić Jo A. Hannafin Branka R. Matković 《Journal of sports sciences》2013,31(9):907-913
Abstract In this study, we evaluated the extent to which 2000-m rowing ergometer performance times predicted final rankings at the World Rowing Championships in a sample of 638 rowers of both sexes and body-mass classifications (i.e. open-category and lightweight rowers). Rowing ergometer performance times were examined using a questionnaire, and in 17 of 23 events they were positively correlated (P ≤ 0.049) with the final rankings at the Championships. The highest correlations were for the ergometer performance times achieved by rowers in lightweight men's single sculls (r = 0.78; P = 0.005), women's single sculls (r = 0.75; P = 0.002), men's single sculls (r = 0.72; P = 0.004), and lightweight men's double sculls (r = 0.72; P < 0.001). We used linear regression to establish regression equations to predict final rankings based on 2000-m rowing ergometer performance times for each event in which there was a correlation greater than r = 0.50. Although correlations in 12 events met this criterion, the large standard errors of the estimate hindered ranking predictions in all of the studied events. Regression equations could be used to determine the most probable 2000-m ergometer performance time for a rower to achieve specific rankings at the World Rowing Championships. 相似文献
10.
Kristina L. Kendall Abbie E. Smith David H. Fukuda Teddi R. Dwyer 《Journal of sports sciences》2013,31(9):945-950
Abstract The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake ([Vdot]O2max), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute [Vdot]O2max was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers. 相似文献
11.
The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake (VO(2max)), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute VO(2max) was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers. 相似文献
12.
Matthew M. Doyle Andrew Lyttle Bruce Elliott 《Sports biomechanics / International Society of Biomechanics in Sports》2013,12(3):178-192
The aim of this study was to examine biomechanical variables relating to the force production of men's Lightweight (LW) and Heavyweight (HW) rowing pairs. Seven HW and seven LW coxless pairs were studied under a range of stroke rates, from 20 spm to race rating (average of 33.7 spm for the HWs and 33.9 spm for the LWs). Each crew was equipped with biomechanical apparatus allowing the measurement of gate force, horizontal oar angle, and boat velocity. The HW crews exhibited significantly higher (p < 0.05) values for all variables examined, at all rates. Peak handle force was 26.2% to 30.2% higher in the HW group. Average handle force ranged from 18.7% to 22.1% higher than the LW group. Work per stroke was found to be 26% to 28% higher for the HW crews, and Power Per Kilogram was also greater for the HW crews, from 24.0% to 29.2%. The LWs were observed to be consistently, but not significantly, slower than the HWs (from 96.9% at the race situation, to 98.7% at 28 spm). These observations are important when considering biomechanical performance indicators in rowing, as significant changes in performance indicators may lead to only minimal alteration in boat velocity. 相似文献
13.
Abstract The aim of the present study was to find a more optimal blade design for rowing performance than the Big Blade, which has been shown to be less than optimal for propulsion. As well as the Big Blade, a flat Big Blade, a flat rectangular blade, and a rectangular blade with the same curvature and projected area as the Big Blade were tested in a water flume to determine their fluid dynamic characteristics at the full range of angles at which the oar blade might present itself to the water. Similarities were observed between the flat Big Blade and rectangular blades. However, the curved rectangular blade generated significantly more lift in the angle range 0 – 90° than the curved Big Blade, although it was similar between 90 and 180°. This difference was attributed to the shape of the upper and lower edges of the blade and their influence on the fluid flow around the blade. Although the influence of oar blade design on boat speed was not investigated here, the significant increases in fluid force coefficients for the curved rectangular blade suggest that this new oar blade design could elicit a practically significant improvement in rowing performance. 相似文献
14.
The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test 总被引:6,自引:0,他引:6
The aim of this study was to establish the relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m time-trial on a Concept II Model B rowing ergometer. The participants were 13 male club standard oarsmen. Their mean (+/- s) age, body mass and height were 19.9+/-0.6 years, 73.1+/-6.6 kg and 180.5+/-4.6 cm respectively. The participants were tested on the rowing ergometer to determine their maximal oxygen uptake (VO2max), rowing economy, predicted velocity at VO2max, velocity and VO2 at the lactate threshold, and their velocity and VO2 at a blood lactate concentration of 4 mmol x l(-1). Percent body fat was estimated using the skinfold method. The velocity for the 2000 m performance test and the predicted velocities at the lactate threshold, at a blood lactate concentration of 4 mmol x l(-1) and at VO2max were 4.7+/-0.2, 3.9+/-0.2, 4.2+/-0.2 and 4.6+/-0.2 m x s(-1) respectively. A repeated-measures analysis of variance showed that the three predicted velocities were all significantly different from each other (P<0.05). The VO2max and lean body mass showed the highest correlation with the velocity for the 2000 m time-trial (r = 0.85). A stepwise multiple regression showed that VO2max was the best single predictor of the velocity for the 2000 m time-trial; a model incorporating VO2max explained 72% of the variability in 2000 m rowing performance. Our results suggest that rowers should devote time to the improvement of VO2max and lean body mass. 相似文献
15.
Vincent Fohanno Antoine Nordez Richard Smith 《Sports biomechanics / International Society of Biomechanics in Sports》2013,12(3):310-322
Between limb movement asymmetries and foot force production asymmetries are thought to be detrimental for both rower's performance and risk of injury, particularly when rowing frequently on ergometers. Several ergometers with different designs can be used by rowers as part of their indoor training. Hence, this study aimed to compare asymmetries in lower limb joint kinematics and foot force production with respect to ergometer design and rowing intensity. A new symmetry index was proposed to assess these asymmetries in elite rowers during a test on three ergometers. Additionally, the asymmetry in lower limb length was assessed to investigate its relationship with kinematic and kinetic asymmetries. Parameters describing medium (5–10%) or high (>10%) asymmetries were compared between rowing ergometers and intensities. Results indicated medium asymmetries for the ankle joint angle and hip–knee joint accelerations and high asymmetries for the resultant force and the ankle joint acceleration associated with a low inter-stroke variability. Kinetic asymmetry was neither correlated to kinematic asymmetry nor with lower limb length asymmetry. The use of a mobile ergometer led to higher joint acceleration asymmetries. Further studies are necessary to investigate the relation between these findings and muscular adaptations that may increase the risk of lower-back injury. 相似文献
16.
《European Journal of Sport Science》2013,13(5):291-296
Abstract Data from the 2008 Olympic rowing regatta were analysed to determine the time distribution during races and to assess whether pacing patterns differ between heats and the corresponding finals. Absolute and relative sector times for all of the four 500 m race quarters were analysed, for all boats in all heavyweight heats and final races (n=72 boats for men, n=60 boats for women). Irrespective of race type, boat rank or boat type, analyses of variance with repeated measures revealed that absolute times in the second and/or third race quarter(s) were significantly (both sexes: P<0.001) longer than those either in the first or final quarter, resulting in a parabolic-shaped profile. Compared with the heats, the pacing pattern adopted during the finals was significantly different (females: P<0.013; males: P<0.001); that is, relatively slower in the first and second race quarter but relatively faster in the last quarter. The parabolic-shaped race profile indicates an anticipatory control of speed and energy distribution over the course of the 2000-m race. The observed changes in pacing pattern suggest that during the finals a more conservative starting pace is used, which could be physiologically advantageous, because some energy is withheld for the final spurt. 相似文献
17.
Fiona Wilson Conor Gissane John Gormley Ciaran Simms 《Sports biomechanics / International Society of Biomechanics in Sports》2013,12(2):132-142
Lumbar spine injury in rowers is common and ergometer rowing has been cited as a risk factor for this injury. The purpose of this study is to compare lumbar kinematics between ergometer and single scull rowing and to examine the effect of fatigue on kinematics. The sagittal lumbar spine motion of 19 elite male rowers (lumbar spine injury free in the previous six months) was measured with an electrogoniometer during a ‘step test’ on an ergometer and in a single sculling boat. Maximum range of lumbar flexion was recorded in standing for reference. Power output and heart rate were recorded during the ergometer tests. Heart rate was used as a surrogate for power output in the sculling test. Maximum lumbar flexion increased during the step test and was significantly greater on the ergometer (4.4° ± 0.9°change), compared with the boat (+1.3° ± 1.1°change), (3.1°difference, p = 0.035). Compared to the voluntary range of motion, there is an increase of 11.3% (ergometer) and 4.1% (boat). Lumbar spine flexion increases significantly during the course of an ergometer trial while changes in a sculling boat were minimal. Such differences may contribute to the recent findings linking ergometer use to lower-back injury. 相似文献
18.
AbstractThis study assessed muscle recruitment patterns and stroke kinematics during ergometer and on-water rowing to validate the accuracy of rowing ergometry. Male rowers (n = 10; age 21 ± 2 years, height 1.90 ± 0.05 m and body mass 83.3 ± 4.8 kg) performed 3 × 3 min exercise bouts, at heart and stroke rates equivalent to 75, 85 and 95% V?O2peak, on both dynamic and stationary rowing ergometers, and on water. During exercise, synchronised data for surface electromyography (EMG) and 2D kinematics were recorded. Overall muscle activity was quantified by the integration of rmsEMG and averaged for each 10% interval of the stroke cycle. Muscle activity significantly increased in rectus femoris (RF) and vastus medialis (VM) (P <0.01), as exercise intensity increased. Comparing EMG data across conditions revealed significantly (P <0.05) greater RF and VM activity during on-water rowing at discrete 10% intervals of stroke cycle. In addition, the drive/recovery ratio was significantly lower during dynamic ergometry compared to on-water (40 ± 1 vs. 44 ± 1% at 95%, P <0.01). Results suggest that significant differences exist while comparing recruitment and kinematic patterns between on-water and ergometer rowing. These differences may be due to altered acceleration and deceleration of moving masses on-ergometer not perfectly simulating the on-water scenario. 相似文献
19.
Marcos Gutiérrez-Dávila Matteo Caletti Raquel Antonio Enrique Navarro 《Journal of sports sciences》2013,31(10):1100-1107
Abstract The aim of this study was to test the effect that changing targets during a simple long lunge attack in fencing exerts on the temporal parameters of the reaction response, the execution speed, and the precision and the coordination of the movement pattern. Thirty fencers with more than 10 years of experience participated in this study. Two force platforms were used to record the horizontal components of the reaction forces and thereby to determine the beginning of the movement. A three-dimensional (3D) system recorded the spatial positions of the 9 markers situated on the fencer plus the epee, while a moving target was projected on a screen, enabling the control of the target change. The results indicated that when a target change is provoked the reaction time (RT), movement time (MT), and the time used in the acceleration phase of the centre of mass (CM) increases significantly with respect to the attack executed with a straight thrust. The speed and horizontal distance reached by the CM at the end of the acceleration phase (VX(CM) and SX(CM), respectively) significantly decreased, while the errors increased. However, the temporal sequence of the movement pattern did not appreciably change. 相似文献
20.
Gordon E. Barkwell 《Sports biomechanics / International Society of Biomechanics in Sports》2018,17(4):429-441
FINA recently approved the backstroke ledge (Omega OBL2) to improve backstroke start performance in competition, but its performance has not been thoroughly evaluated. The purpose of this study was to compare the mechanics of starts performed with and without the OBL2. Ten high-level backstroke swimmers performed three starts with, and three starts without, the OBL2. A wall-mounted force plate measured the lower limb horizontal impulse, vertical impulse, take-off velocity and take-off angle. Entry distance, time to 10 m and start of hip and knee extension were recorded using video cameras. Starts performed with the OBL2 had a 0.13 s lower time to 10 m, 2.5% less variability in time to 10 m and 0.14 m greater head entry distance. The OBL2 provides a performance advantage by allowing an increased head entry distance rather than larger horizontal impulse on the wall. This may be due to the swimmers assuming different body positions during the start manoeuvre. Additional studies are needed to evaluate factors that contribute to improved performance when using the OBL2. Swimmers should train with the OBL2 and use it in competition to ensure optimal start performance. 相似文献