首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The length-tension relationship of muscle contraction is well documented in adults. However, research on this relationship in children has been limited. The aim of this study was to compare differences in the torque-joint angle relationship of the quadriceps muscle in children and adults. Eight boys aged 8-10 years and eight men aged 20-26 years performed two maximal voluntary isometric contractions at six knee joint angles (20 degrees, 40 degrees, 60 degrees, 80 degrees, 90 degrees, 100 degrees). The mean of the two trials was used as the performance measure. Both groups demonstrated an expected increase in relative torque as the joint angle increased (P< 0.05). The men produced significantly greater relative torque at 20 degrees, 40 degrees and 60 degrees knee flexion (P < 0.05). The percentage of maximal torque at these angles for the men and boys respectively were: 35.2+/-4.3 vs 15.2+/-12%, 63.6+/-9.1 vs 51.8+/-16.8% and 93.6+/-6.5 vs 84.4+/-14.4%. There were no group differences at 80 degrees or 90 degrees. Peak torque was attained at 80 degrees in men, but decreased significantly (P< 0.05) at 90 degrees and 100 degrees. For boys, peak torque was attained at joint angles of 80 degrees and 90 degrees. The reduction in peak torque at 100 degrees was not statistically significant, but the relative torque at this angle was lower in men than in boys (77.9+/-13.7 vs 87.1+/-10.4%; P< 0.05). In conclusion, the relationship between torque and joint angle appears to be affected by age.  相似文献   

2.
Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque–angle (T–A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s-1. Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T–A relationship had an inverted “U”-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.  相似文献   

3.
A single bout of eccentric exercise induces a protective adaptation against damage from a repeated bout. The aim of this study was to determine whether this repeated bout effect is due to a change in the length–tension relationship. Twelve individuals performed an initial bout of six sets of 10 eccentric quadriceps contractions and then performed a repeated bout 2 weeks later. Eccentric contractions were performed on an isokinetic dynamometer at 1.04 rad?·?s?1 with a target intensity of 90% of isometric strength at 70° of knee flexion. Isometric strength and pain were recorded before and after both eccentric bouts and on each of the next 3 days. Isometric strength was tested at 30°, 50°, 70°, 90° and 110° of knee flexion. On the days following the initial bout, there was a significant loss of isometric strength at all knee flexion angles except 110° (bout×angle: P?<0.01). On day 2, strength averaged 86% of baseline for 30–90° and 102% of baseline for 110°. Strength loss and pain after the initial bout was contrasted by minimal changes after the repeated bout (pain: P?<0.001; strength: P?<0.01). The repeated bout effect was associated with a rightward shift in the length–tension curve; before the repeated bout, isometric strength was 6.8% lower at 30° and 13.6% higher at 110° compared with values before the initial bout (bout×angle: P?<0.05). Assuming that torque production at 110° occurs on the descending limb of the length–tension curve, the increase in torque at 110° may be explained by a longitudinal addition of sarcomeres. The addition of sarcomeres would limit sarcomere strain for subsequent eccentric contractions and may explain the repeated bout effect observed here.  相似文献   

4.
The aims of this study were to examine the acute effects of static stretching on peak torque, work, the joint angle at peak torque, acceleration time, isokinetic range of motion, mechanomyographic amplitude, and electromyographic amplitude of the rectus femoris during maximal concentric isokinetic leg extensions at 1.04 and 5.23 rad x s(-1) in men and women. Ten women (mean +/- s: age 23.0 +/- 2.9 years, stature 1.61 +/- 0.12 m, mass 63.3 +/- 9.9 kg) and eight men (age 21.4 +/- 3.0 years, stature 1.83 +/- 0.11 m, mass 83.1 +/- 15.2 kg) performed maximal voluntary concentric isokinetic leg extensions at 1.04 and 5.23 rad x s(-1). Following the initial isokinetic tests, the dominant leg extensors were stretched using four static stretching exercises. After the stretching, the isokinetic tests were repeated. Peak torque, acceleration time, and electromyographic amplitude decreased (P< or = 0.05) from pre- to post-stretching at 1.04 and 5.23 rad . s(-1); there were no changes (P > 0.05) in work, joint angle at peak torque, isokinetic range of motion, or mechanomyographic amplitude. These findings indicate no stretching-related changes in the area under the angle - torque curve (work), but a significant decrease in peak torque, which suggests that static stretching may cause a "flattening" of the angle - torque curve that reduces peak strength but allows for greater force production at other joint angles. These findings, in conjunction with the increased limb acceleration rates (decreased acceleration time) observed in the present study, provide tentative support for the hypothesis that static stretching alters the angle - torque relationship and/or sarcomere shortening velocity.  相似文献   

5.
The aim of this study was to determine the extent to which the resistance provided by variable-cam resistance training machines match joint torque capability. Eight variable-cam knee extension machines from six different manufacturers were assessed. Resistive torque for a constant weight/load was measured at five knee joint angles. Knee extensor muscle torque capability--the angle-torque relationship--of 10 healthy young men was determined isometrically and dynamically at the same five angles. After normalization, the two relationships were compared. The angle - torque relationship of the knee extensors displayed an inverted "U" shape as expected, with dynamic torque changing by +40% on the ascending limb (1.75 - 1.40 rad) and -60% on the descending limb (1.05-0.35 rad) of the angle - torque relationship. The angle-torque relationship of the different training machines was highly variable, but consistently less curvilinear and significantly different from knee extensor capabilities, with changes in torque of +2.5 to +22.2% (ascending limb) and +37.6 to -20.5% (descending limb). It is recommended that variable-cam resistance training machines be designed with the angle - torque relationship of the relevant joint and the inertial profile of the lifting exercise in mind.  相似文献   

6.
The purposes of this study were to analyse (a) if “angle-specific” (AS) flexor and extensor torques were different between ACL-reconstructed and uninvolved limbs, (b) the difference in peak torque occurrence angles for concentric and eccentric knee flexor and extensor torques between involved and uninvolved limbs and (c) if AS concentric and eccentric knee flexor and extensor torques are determinants of performance in the “single-leg hop test” (SLHT) and “vertical jump and reach test” (VJRT) in ACL-reconstructed legs. Twenty-seven male ACL-reconstructed volunteers were included in the study. Isokinetic knee muscle strength, SLHT and VJRT were performed 6 months after ACL reconstruction. No difference was found in extremity and knee joint angle interaction for concentric and eccentric flexor and extensor torques (p > 0.05). Peak torque occurrence angles were not different between involved and uninvolved limbs (p > 0.05). In involved extremities, concentric knee extensor strength at 90° was a determinant of SLHT performance (R2 = 0.403, p < 0.05), and concentric knee extensor strength at 60° was a determinant of VJRT (R2 = 0.224, p < 0.05). Assessment of AS concentric knee extensor strength at 60° and 90° might be important, because these were determinants of functional test performance.  相似文献   

7.
This study compared knee angle-specific neuromuscular adaptations after two low-volume isometric leg press complex training programmes performed at different muscle lengths. Fifteen young males were divided into two groups and trained three times per week for 6 weeks. One group (n?=?8) performed 5–7 sets of 3 s maximum isometric leg press exercise, with 4?min recovery, with knee angle at 85°?±?2° (longer muscle-tendon unit length; L-MTU). The other group (n?=?7) performed the same isometric training at a knee angle of 145°?±?2° (180°?=?full extension; shorter muscle-tendon unit length; S-MTU). During the recovery after each set of isometric exercise, participants performed two CMJ every minute, as a form of complex training. Maximum isometric force (MIF) and rate of force development (RFD) were measured over a wide range of knee angles. Countermovement jump (CMJ) performance and maximum half-squat strength (1RM) were also assessed. Training at S-MTU induced a large increase of MIF (22–58%, p?p?p?=?0.001). In contrast, training at L-MTU, resulted in a moderate and similar (≈12.3%, p?=?0.028) improvement of force at all knee angles. CMJ performance and 1RM were equally increased in both groups after training by 10.4%?±?8.3% and 7.8%?±?4.7% (p?相似文献   

8.
Abstract

The purpose of this study was to examine the effect of fatiguing exercise on sex-related differences in the function of hamstring and quadriceps muscles at several angular velocities and joint angles. Physically active participants (50 male: 28.7?±?4.5y, 1.82?±?0.07 m, 82.3?±?6.87?kg; 50 female: 27.0?±?5.8y, 1.61?±?0.08 m, 68.75?±?9.24?kg) carried out an isokinetic assessment to determine concentric and eccentric torques during knee extension and flexion actions at three different angular velocities (60/180/300°/s). The H/QFUNCT was calculated using peak torque (PT) values at 3 different joint-angle-specific (15°, 30° and 45° of knee flexion). A repeated measures analysis of variance (ANOVA) was used to compare within group results. Between group comparisons of sex-related differences were assessed by independent T-tests. Fatiguing exercise in males resulted in a decrease in H/QFUNCT ratios for each angle of knee flexion at both 60°/s and 300°/s angular velocities (p?<?0.05). In females, significant decreases in H/QFUNCT ratios were observed following fatiguing exercise for each angle of knee flexion and angular velocity (p?<?0.01). Significant differences in H/QFUNCT ratios following fatiguing exercise were evident between males and females at each joint angle and angular velocity (p?<?0.01). These findings indicate sex related differences in H/QFUNCT ratios following fatiguing exercise. Females have greater reductions in torque and H/QFUNCT ratios following fatigue than their male counterparts. This potentially exposes females to higher risks of injury, particularly when fatigued. Practitioners should attend to the imbalance in fatigue resistance of hamstring and quadriceps function, particularly in female athletes.  相似文献   

9.
Purpose: There is uncertainty as to which knee angle during a squat jump (SJ) produces maximal jump performance. Importantly, understanding this information will aid in determining appropriate ratios for assessment and monitoring of the explosive characteristics of athletes. Method: This study compared SJ performance across different knee angles—90º, 100º, 110º, 120º, 130º, and a self-selected depth—for jump height and other kinetic characteristics. For comparison between SJ and an unconstrained dynamic movement, participants also performed a countermovement jump from a self-selected depth. Thirteen participants (Mage = 25.4 ± 3.5 years, Mheight = 1.8 ± 0.06 m, Mweight = 79.8 ± 9.5 kg) were recruited and tested for their SJ performance. Results: In the SJ, maximal jump height (35.4 ± 4.6 cm) was produced using a self-selected knee angle (98.7 ± 11.2°). Differences between 90°, 100°, and self-selected knee angles for jump height were trivial (ES ± 90% CL = 90°–100° 0.23 ± 0.12, 90°–SS ?0.04 ± 0.12, 100°–SS ?0.27 ± 0.20; 0.5–2.4 cm) and not statistically different. Differences between all other knee angles for jump height ranged from 3.8 ± 2.0 cm (mean ± 90% CL) to 16.6 ± 2.2 cm. A similar outcome to jump height was observed for velocity, force relative to body weight, and impulse for the assessed knee angles. Conclusions: For young physically active adult men, the use of a self-selected depth in the SJ results in optimal performance and has only a trivial difference to a constrained knee angle of either 90° or 100°.  相似文献   

10.
The present study assessed the effects of training using electrostimulation of muscle (EMS) on the torque‐angular velocity and torque‐angle relationships, and the cross‐sectional area (CSA) of the triceps surae. Twelve physical education students, divided into two groups (6 control, 6 experimental), participated in the experiment. The EMS sessions were undertaken using a ‘Compex‐type’ stimulator. Flexible elastomer electrodes were used. The current used discharged pulses lasting for 200 μs at a frequency of 70 Hz. The durations of contraction and rest were 5 and 15 s, respectively. The session lasted for 10 min for each muscle. The training regimen was three sessions per week for 4 weeks. Biomechanical tests were performed with the Biodex (Biodex Corporation, Shirley, NY, USA) isokinetic ergometer. Plantar flexions of the ankle over a concentric range of voluntary contractions were performed at different angular velocities (1.05, 2.10, 3.14, 4.20, 5.23 and 6.28 rad s‐1) and maximum voluntary isometric contractions were held for 5 s at several ankle flexion angles (–30°, –15°, 0° and 15°; 0° corresponds to foot flexion of 90° relative to the leg axis). The peak value of the torque was recorded. Morphological tests consisted of measuring the CSA of the triceps surae on the right leg, 15 cm below the tibial protuberance, by a computerized tomography technique. The torque‐velocity relationship was seen to shift significantly upwards after EMS training. The increase in the isometric torque observed after EMS training was greater in dorsiflexion than in plantarflexion. No change was noted in the CSA of the muscle. It appears that the increase in strength following EMS training is not related to an increase in the contractile matter. These observations show that EMS training for 4 weeks develops dynamic and static contractile properties of the muscle. Neural mechanisms may account for these adaptations.  相似文献   

11.
Abstract

In this study, we examined the long-term reductions in maximal isometric force (MIF) caused by a protocol of repeated maximal isometric contractions at long muscle length. Furthermore, we wished to ascertain whether the reductions in MIF are dependent on muscle length — that is, are the reductions in MIF more pronounced when the muscle contracts at a short length. The MIF of the elbow flexors of seven young male volunteers was measured at five different elbow angles between 50° and 160°. On a separate day, the participants performed 50 maximal voluntary isometric muscle contractions with the elbow flexors at a lengthened positions that is, with the shoulder hyperextended at 45° and the elbow joint fixed at 140°. Following this exercise, the MIF at the five elbow angles, range of motion, muscle soreness and plasma creatine kinase activity were measured at 24 h intervals for 4 days. On day 1, the decline in MIF was higher at the more acute elbow angles of 50° (42±8%) and 70° (39±8%; both P<0.01) than at 90° (26±4%) and 140° (16±3%; both P<0.01). No significant reduction in MIF was evident at an elbow angle of 160°. Maximal isometric force at an elbow angle of 140° was fully restored on day 3, whereas at an angle of 50° it remained depressed for the 4 day observation period. Restoration of MIF was a function of the elbow angle, with force recovery being less at the smaller angles. The range of motion was decreased by 14±2° on day 1 (P<0.01) and did not return to baseline values by day 4. Muscle soreness ratings remained significantly elevated for the 4 day period. Serum creatine kinase peaked on day 1 (522±129 IU, P<0.01) and decreased thereafter. We conclude that the disproportionate decrease in MIF at the small elbow angles and the length-specific recovery in MIF after repeated maximal isometric contractions at long muscle length may be explained by the presence of overstretched sarcomeres that increased in series compliance of the muscle, therefore causing a rightward shift of the force-length relationship.  相似文献   

12.
Abstract

The aims of this study were to examine the acute effects of static stretching on peak torque, work, the joint angle at peak torque, acceleration time, isokinetic range of motion, mechanomyographic amplitude, and electromyographic amplitude of the rectus femoris during maximal concentric isokinetic leg extensions at 1.04 and 5.23 rad · s?1 in men and women. Ten women (mean ± s: age 23.0 ± 2.9 years, stature 1.61 ± 0.12 m, mass 63.3 ± 9.9 kg) and eight men (age 21.4 ± 3.0 years, stature 1.83 ± 0.11 m, mass 83.1 ± 15.2 kg) performed maximal voluntary concentric isokinetic leg extensions at 1.04 and 5.23 rad · s?1. Following the initial isokinetic tests, the dominant leg extensors were stretched using four static stretching exercises. After the stretching, the isokinetic tests were repeated. Peak torque, acceleration time, and electromyographic amplitude decreased (P≤ 0.05) from pre- to post-stretching at 1.04 and 5.23 rad · s?1; there were no changes (P > 0.05) in work, joint angle at peak torque, isokinetic range of motion, or mechanomyographic amplitude. These findings indicate no stretching-related changes in the area under the angle – torque curve (work), but a significant decrease in peak torque, which suggests that static stretching may cause a “flattening” of the angle – torque curve that reduces peak strength but allows for greater force production at other joint angles. These findings, in conjunction with the increased limb acceleration rates (decreased acceleration time) observed in the present study, provide tentative support for the hypothesis that static stretching alters the angle – torque relationship and/or sarcomere shortening velocity.  相似文献   

13.
To reduce aerodynamic resistance cyclists lower their torso angle, concurrently reducing Peak Power Output (PPO). However, realistic torso angle changes in the range used by time trial cyclists have not yet been examined. Therefore the aim of this study was to investigate the effect of torso angle on physiological parameters and frontal area in different commonly used time trial positions. Nineteen well-trained male cyclists performed incremental tests on a cycle ergometer at five different torso angles: their preferred torso angle and at 0, 8, 16 and 24°. Oxygen uptake, carbon dioxide expiration, minute ventilation, gross efficiency, PPO, heart rate, cadence and frontal area were recorded. The frontal area provides an estimate of the aerodynamic drag. Overall, results showed that lower torso angles attenuated performance. Maximal values of all variables, attained in the incremental test, decreased with lower torso angles (P < 0.001). The 0° torso angle position significantly affected the metabolic and physiological variables compared to all other investigated positions. At constant submaximal intensities of 60, 70 and 80% PPO, all variables significantly increased with increasing intensity (P < 0.0001) and decreasing torso angle (P < 0.005). This study shows that for trained cyclists there should be a trade-off between the aerodynamic drag and physiological functioning.  相似文献   

14.
Abstract

The purpose of this study was to investigate changes in ankle joint stiffness and the associated changes in the gastrocnemius muscle and tendon due to static stretching. Seven healthy male participants lay supine with the hip and knee joints fully extended. The right ankle joint was rotated into dorsiflexion from a 30° plantar flexed position and the torque measured by a dynamometer. The ankle joint was maintained in a dorsiflexed position for 20 min (static stretching of the calf muscles). We performed surface electromyography of the medial and lateral gastrocnemii, the soleus, and the tibialis anterior of the right leg to confirm no muscle activity throughout static stretching and the passive test (passive dorsiflexion). During static stretching, the ankle joint angle and elongation of the gastrocnemius were recorded by goniometry and ultrasonography, respectively. Tendon elongation of the gastrocnemius was calculated based on the changes in the ankle joint angle and muscle elongation. In addition, the relationships between passive torques and ankle joint angles, and elongation of muscle and tendon, were examined before and after static stretching. The ankle dorsiflexion angle and tendon elongation increased significantly by 10 min after the onset of static stretching, while there was no further increase in muscle length. In addition, ankle dorsiflexion angle and tendon elongation at an identical passive torque (30 N · m) increased significantly (from 24±7° to 33±5° and from 17±2 mm to 22±1 mm, respectively) after static stretching. However, muscle elongation was unchanged. In conclusion, the current results suggest that an increase in the ankle joint dorsiflexion angle due to static stretching is attributable to a change in tendon not muscle stiffness.  相似文献   

15.
The purpose of this study was to investigate torque differences between 28 boys and 28 girls, ages 7 to 13 years, for the knee and elbow flexor and extensors at 30°/second and 120°/second using an isokinetic procedure (Cybex II). In addition, the relationships of these torque levels to size and age were determined. The results revealed significant (p < .05) sex differences for the knee flexor and extensor torque values at 120°/second independent of body weight. That is, the boys generated 29.2 and 39.5 foot pounds vs. the girl's 26.2 and 35.4 foot pounds for knee flexion and extension, respectively. Similarly, torque differences (p < .05) between boys and girls were present for elbow extension at 120°/second when adjusting for differences in height. When examining the flexion/extension ratios, it is apparent that increases in body size (height, weight) and age had a significant effect on the ratio at 120°/second but not at 30°/second.  相似文献   

16.
Abstract

We hypothesized that imagery training would improve the fast onset of neuromuscular activation and thereby fast knee extensor isometric torque development. Forty young healthy participants, not involved in strength training, were assigned to one of four groups: physical training, imagery training, placebo training or control. The three training groups had three 15 min sessions per week for 4 weeks, with a 90° knee angle but were tested also at 120°. At 90° knee angle, maximal torque increased (~8%) similarly in all three training groups. The torque–time integral (contractile impulse) over the first 40 ms after torque onset (TTI40) increased (P < 0.05) after physical training (by ~100%), but only at 90°. This increase was significantly different from the delta values (change pre to post) in the control and placebo groups, whereas delta values in the imagery group were similar to those in the placebo group. The increases in TTI40 following physical training were related (r 2 = 0.81, P < 0.05) to significant increases of knee extensor rectified surface EMG at torque onset (EMG40). In conclusion, only physical training led to a knee angle specific increase of contractile impulse that was significantly different from placebo and controls and that was related to improved onset of neuromuscular activation.  相似文献   

17.
The objective of this study was to investigate the effects of age group, walking speed, and body composition on the accuracy of pedometer-determined step counts in children. Eighty-five participants (43 boys, 42 girls), ages 5–7 and 9–11 years, walked on a treadmill for two-minute bouts at speeds of 42, 66, and 90 m·min-1 while wearing a spring-levered (Yamax SW-200) and a piezoelectric (New Lifestyles NL-2000) pedometer. The number of steps taken during each bout was also recorded using a hand counter. Body mass index (BMI) was calculated from height and mass, and percentage of body fat (%BF) was determined using hand-to-foot bioelectrical impedance analysis. The tilt angle of the pedometer was assessed using a magnetic protractor. Both pedometers performed well at 66 and 90 m·min-1, but undercounted steps by approximately 20% at 42 m·min-1. Although age group, BMI, waist circumference, and %BF did not affect pedometer accuracy, children with large pedometer tilt angles (≥ 10°) showed significantly greater percent bias than those with small tilt angles (< 10°). We suggest that the style of waistband on the child's clothing is a more important determinant of tilt angle and thus pedometer accuracy than body composition. Our results also indicate that the NL-2000 pedometer provides similar accuracy and better precision than the SW-200 pedometer, especially in children with large tilt angles. We conclude that fastening pedometers to a firm elastic belt may improve stability and reduce undercounting in young people.  相似文献   

18.
Abstract

The aim of the present study was to investigate the patterns of shoulder muscle activation and joint torques during maximal effort eccentric contractions with shoulder extension, abduction, and diagonal movements on the isokinetic device. Participants in this investigation were nine men and four women with no history of shoulder injury or disorders. They all participated in overhead sports at least three days a week, and volunteered to participate in this study for shoulder isokinetic muscle strength testing. They performed eccentric muscle action with shoulder flexion, abduction, and diagonal movements at velocities of 60 rad·s?1 and 180 rad· s?1, which was followed alternately by passive shoulder flexion, abduction and diagonal movement at a velocity of 30 rad· s?1, and total range of motion was standardised to 90°. Electromyography (EMG) and torque values were calculated to every 10°, except for the start and end 5° during each task. During each test, the isokinetic force output and muscle activation were synchronised. EMG data were normalised by percentage of maximum voluntary isometric contraction (%MVIC). EMG signals were recorded by surface EMG from the anterior deltoid (AD), middle deltoid (MD), posterior deltoid (PD), upper trapezius (UT), middle trapezius (MT), and biceps brachii (BB) muscles during this test. All of the muscle patterns were significantly decreased at the last compared with the initial part during eccentric shoulder flexion movement, except for the BB muscle (P < 0.05). AD and BB muscles played a similar role when peak torque was generated under load during eccentric muscle action with varying shoulder movements. PD and UT muscle activities were significantly lower than the other muscle activities during eccentric contraction with shoulder flexion and abduction movements, and the PD and UT muscles played a significant role in conjunction with MD and MT muscles in varying degrees during eccentric contraction with shoulder diagonal movements at 180 rad·s?1 (P < 0.05). Our study demonstrated that MT muscle activity was greatly influenced when torque values showed a peak moment under load during maximum effort, eccentric contraction with shoulder abduction and diagonal movements. However, the MD, PD, UT, and MT muscle activities had no great influence when peak torque was generated under load during eccentric muscle action with shoulder diagonal movement at high velocity. The present study suggested that varying eccentric muscle activity patterns may be needed to investigate proper training and functional contributions of upper extremity muscles to stabilisation of the shoulder joint when peak torque was generated under load.  相似文献   

19.
ABSTRACT

This study investigated the effects of maturity status on knee extensor torque and vastus lateralis architecture of young soccer players. Thirty-four males aged 13–18 years were divided into two groups: pubescent (PUB, n = 15) and postpubescent (POSP, n = 19). Torque by angle interaction was established for absolute [F(2.649, 84.771) = 9.066, p < 0.05] and relative to body mass [F(2.704, 86.533) = 4.050, p < 0.05] isometric torque with the POSP group showing greater values. Muscle volume torque-angle relationship was similar between groups. Absolute, relative to body mass, and relative to muscle volume concentric and eccentric torque-velocity relationship showed a non-significant interaction but a significant group effect in favour the POSP group for absolute and concentric torque relative to body mass. Torque-angle and torque-velocity relationship normalized by body mass allometric exponents showed a non-significant interactions and group effects. Muscle thickness (3.6 ± 0.6 vs. 3.8 ± 0.6 cm), fascicle length (8.3 ± 1.4 vs. 8.9 ± 1.6 cm) and pennation angle (15.0 ± 2.3 vs. 14.3 ± 3.2 degrees) was similar between PUB and POSP groups, respectively. Maturity status did not show a significant effect on muscle architecture and on isometric and dynamic torques when allometrically normalized.  相似文献   

20.
The aim of this study was to assess the effect of time of day on physiological responses to running at the speed at the lactate threshold. After determination of the lactate threshold, using a standard incremental protocol, nine male runners (age 26.3 - 5.7 years, height 1.77 - 0.07 m, mass 73.1 - 6.5 kg, lactate threshold speed 13.6 - 1.6 km· h -1 ; mean - s ) completed a standardized 30 min run at lactate threshold speed, twice within 24 h (07:00- 09:00 h and 18:00-21:00 h). Core body temperature, heart rate, minute ventilation, oxygen uptake, carbon dioxide expired, respiratory exchange ratio and capillary blood lactate were measured at rest, after a warm-up and at 10, 20 and 30 min during the run. In addition, the rating of perceived exertion was reported every 10 min during the run. Significant diurnal variation was observed only for body temperature (36.9 - 0.9°C vs 37.3 - 0.3°C) and respiratory exchange ratio at rest (0.86 - 0.01 vs 0.89 - 0.07) ( P ? 0.05). Diurnal variation persisted for body temperature throughout the warm-up (37.1 - 0.2°C vs 37.5 - 0.3°C) and during exercise (36.2 - 0.6°C vs 38.6 - 0.4°C), but only during the warm-up for the respiratory exchange ratio (0.85 - 0.05 vs 0.87 - 0.02) ( P ? 0.05). The rating of perceived exertion was significantly elevated during the morning trial (12.7 - 0.9 vs 11.9 - 1.2) ( P ? 0.05). These findings suggest that, despite the diurnal variation in body temperature, other physiological responses to running at lactate threshold speed are largely unaffected. However, a longer warm-up may be required in morning trials because of a slower increase in body temperature, which could have an impact on ventilation responses and ratings of perceived exertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号