首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
求形如“函数y=a-bsinxc-dcosx的最值”问题的解法较多,从这些解法中可体现出一些数学思想.一、数形结合思想例1.求函数y=1+sinx2+cosx的最小值和最大值.分析:因函数y=1+sinx2+cosx的定义域为R,所以把1+sinx2+cosx可以看为点(cosθ,sinθ)与点(-2,-1)所在直线的斜率.而点(cosθ,sinθ)的轨迹是圆x2+y2=1,因而问题就成为点(-2,-1)与圆x2+y2=1上的动点的连线的斜率最大值、最小值问题.易知,过点(-2,-1)向圆x2+y2=1所作的两条切线的斜率的最大值和最小值就是函数的最大值和最小值.如图,用平面几何的知识得出斜率kBD为所求的最小值,斜率kBC为…  相似文献   

2.
一、利用距离公式例1已知x+y+1=0,则u=(x-1)2+(y-12姨)的最小值为.解如图1所示,如果将u=(x-1)2+(y-1)2看姨成是P(x,y)与B(1,1)两点间的距离,由于点P(x,y)的坐标满足x+y+1=0,所以u的最小值也就是点B(1,1)到直线x+y+1=0的距离,所以um=1+1+13姨2in=.姨22二、利用直线斜率公式例2实数x,y满足(x-2)2+y2=3,求y的最大值.x解如图2所示,设点P(x,y)为圆(x-2)2+y2=3上任一点,则y为直线O P的x斜率k.易求得km=3,ax姨即y的最大值为姨3.x三、利用单位圆例3已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是A.tancosθθ2222C.…  相似文献   

3.
问题若实数x,y,z满足x+y+z=12,x 2+y 2+z 2=54,试求xy的最大值和最小值.[JP3]解法1:由x 2+y 2=54-z 2,可设x=54-z 2 cosθ,y=54-z 2 sinθ.[JP]则x+y+z=12,即12-z=54-z 2(sinθ+cosθ)=108-2z 2 sin(θ+π4),从而|12-z|≤108-2z 2,解得z∈[2,6].所以xy=12[(x+y)2-(x 2+y 2)]=12[(12-z)2-(54-z 2)]=z 2-12z+45.由2≤z≤6,得9≤z 2-12z+45≤25,即xy的最大值为25,最小值为9.  相似文献   

4.
正一、展示不同解题方法,体现合作学习的魅力一次考试,同一道题目,可能出现多种不同解法,在试卷讲评中,让学生把各种不同解法充分展示出来,对开拓学生思维,有着很好的引导作用.考题:已知x2+y2=100,求x+y的最值.此题不难,但解决方法有多种,考试过后,同学们给出了多种不同解答.学生1:换元法,设x=10cosθ,y=10sinθ则x+y=10(cosθ+sinθ)=槡10 2 sin(θ+24),显然,最大值是槡10 2,最小值是-槡10 2.学生2:数形结合法,设t=x+y,则y=-x+t.转化为求直线y=-x+t截距的最大最小值,利用圆心到  相似文献   

5.
例1求函数 的最值。 分析联想到由两点坐标求直线斜率的公式,则可将问题转化为求两点A(3,2)、B(cosx,sins)所确定的直线的斜率的最值问题。 因为sin2x+cos2x=1,所以点B在以原点为圆心的单位圆上。设过A点的直线议程为y-2=k(x-3),y=kx+  相似文献   

6.
函数值域求法很多,如配方法,导数法,单调性法、不等式法等等.数形结合法就是其中一种,即充分利用图形的几何性质,构造数学模型,使问题得以较快速地解决.1构造斜率模型借助斜率求函数值域就是将问题转化为某曲线上的动点与一定点连线的斜率的范围问题.例1求函数sin3cos1yxx=++的最值.分析原函数可化为sin(3)cos(1)yxx=????,所以函数值表示过圆x2+y2=1上的动点和定点A(?1,?3)的直线的斜率,如上图,过点A的直线与圆O相切时,取得最值.设切线方程y+3=k(x+1),则由点到直线距离公式有2|3|11kk?=+.解得3k=3,所以函数最小值为33,无最大值.点评形如商…  相似文献   

7.
在各级各类数学竞赛中常常出现一类“恒成立”问题 .由于这类问题既有参数又有变量 ,同学们处理起来确实存在一些困难 .本文通过实例谈一谈这类问题的若干求解策略和方法 .1 分离参数法例 1 圆 x2 + ( y- 1 ) 2 =1上任意一点 P( x,y)都使不等式 x+ y+ c≥ 0成立 ,则 c的取值范围是 (  ) .( A) ( -∞ ,0 ]  ( B) [2 ,+∞ )( C) [2 - 1 ,+∞ )( D) [1 - 2 ,+∞ )(第七届全国“希望杯”竞赛培训题 )析解 分离参数得 c≥ - x- y.设 x=cosθ,y=1 + sinθ,0≤θ<2 π则 - x- y=- cosθ- 1 - sinθ=- 2 sin(θ+ π4 ) - 1 ,可见 ( - x- y) m…  相似文献   

8.
在求某些函数的最大值、最小值时,用三角函数代换可巧妙地求解.这里介绍几种求最值时常用的三角函数代换. 1.若|x|≤1,可令x=sinθ. 例1 求函数y=(1-x~2)~(1/x)的最大值和最小值. 解:函数定义域是-1≤x≤1令x=sinθ,θ∈[-π/2,π/2],则(1-x~2)~(1/2)=cosθ,∴ y=sinθcosθ=1/2 sin2θ∴当θ=π/4即x=2~(1/2)/2时,y_(max)=1/2,当θ=-π/4即 x=-2~(1/2)/2时,y_(max)=-1/2.  相似文献   

9.
在数学问题的解决中,等价转化与数型结合思想有着极其重要的应用,尤其在一定条件下,求某些式子的最值问题,就可利用数形结合的方法,转化为求斜率、截距、距离等问题,从而使问题得到解决.一、转化为直线的斜率例1 如图1,若实数x,y满足(x-2)2 y2 =3,求y/x的最大值及最小值. 点拨:点(x,y)满足圆的方程,而y/x正是圆上的点与原点连线的斜率.如果把(x,y)视为动点,借助图形观察,则y/x的最大值和最小值正是由原点向圆所引的两条切线的斜率.  相似文献   

10.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

11.
用三角换元法证明不等式是基本方法,根据题意恰当地进行换元,则可使问题快速获解,达到事半功倍的效果.例1设点P(x,y)是圆x~2+(y-1)~2= 1上任意一点,若总有x+y+c≥0,试求c的取值范围.解因为点P(x,y)在圆x~2+(y-1)~2= 1上,故可设x=cosθ,y=1+sinθ,则x+y+c=cosθ+sinθ+1+c≥0恒成立,  相似文献   

12.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

13.
已知sin xcos y=1/2,求cos xsin y的最大值与最小值.错解1:令cos xsin y=t则cos xsin y+sin xcos y=t+1/2,即sin(x+y)=t+1/2.由|sin(x+y)|≤1,得|t+1/21|≤1,解得  相似文献   

14.
利用直线与圆有公共点,能够解决许多比较复杂的数学问题.常常用到的结论有两条:其一,直线与圆有公共点的充要条件是圆心到直线的距离不大于半径;其二,直线与圆相切时只有一个公共点.1一、解决有关函数最值问题例1:求函数y=54csoinsxx+-110的最值【解】函数表达式可化为:4sinx-5ycosx-10y-1=0而sin2x+cos2x=1,所以点(cosx,sinx)是直线4μ-5yυ-10y-1=0与圆μ2+υ2=1的公共点,即圆心(0,)到直线的距离不大于圆的半径,即d=|-10y-1|√16+25y21亦即(10y+1)216+25y2,、解之得:-35y31故ymax=31;ymin=-53例2:已知x29+y42=1,求z=x-3y的最大值与最小…  相似文献   

15.
2013年全国新课标Ⅰ卷理科数学15题为一道考查三角函数性质的填空题,题目结构特殊,内涵丰富,充分体现解法的开放性和多样性,是一道展示新课改理念,考查学生创新精神和培养探索能力的好题.例设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cosθ=.方法1(收缩变换)f(x)=sin x-2cos x=槡5sin(x-φ)(其中"φ"是使得sinφ=2槡5,cosφ=1槡5成立的锐角),因为θ使函数f(x)取得最大值,所以θ-φ=2kπ+π2,即"θ-φ"的终边在y轴的非负半轴上,则θ=2kπ+π2+φ,所以cosθ=cos(2kπ+π2+φ)=-sinφ=-2槡55.方法1用到三角函数中的辅助角公式,将解析式由同角异名变形为同名同角.  相似文献   

16.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

17.
向量是高中教材的新增内容 ,是数形结合的典型体现 ,向量与解析几何同源同宗 .用向量知识去解决两直线共线 (平行 )、垂直及夹角等问题比传统解几方法有着很大的优越性 ,对多数师生来说 ,向量方法还是一个有待发掘的宝库 .这里略举数例 ,以期抛砖引玉 .例 1 已知动点 ( x,y)满足 ( x - 2 ) 2 + ( y - 1) 2 =2 5,求 3x + 4y的取值范围 .解 :设 a =( 3,4 ) ,b =( x - 2 ,y - 1) ,a与 b的夹角为θ,则 3x + 4y =a .b + 10 =| a| | b| cosθ+ 10 =2 5cosθ + 10 .∴ 3x + 4y的最大值为 35,最小值为 - 15,即 3x+ 4y∈ [- 15,35] .例 2  ( 1995年…  相似文献   

18.
我们知道,f(x)严格单调,f(x)=f(y)x=y(*).看起来很平常的这个性质用来巧解下面几道数学竞赛题却很有趣.1求三角函数值例1(1994年全国高中数学联赛试题)已知x,y∈[-π4,π4],a∈R,且x3+sin x-2a=0,4y3+sin ycos y+a=0,则cos(x+2y)=.分析此题的特点是入口非常小,所求的cos(x+2y)的值好象与题设条件没有什么直接关系.我们对方程组中的三个变量x,y,a的系数进行观察,利用t3+sin t在[-π2,π2]上的单调性和性质(*),就能找到一条通向胜利之路.解由于x3+sin x-2a=0,4y3+sin ycos y+a=0,将第二式乘以2与第一式相加并整理,得x3+sin x=(-2y)3+sin(-2y)…  相似文献   

19.
文 1、文 2分别利用图象法和均值代换法解决了一类在给定条件下三角函数取值范围问题 .本文利用函数的单调性来解决这类问题 (下面的例子都是文 1、2中的例题 ,以后不再说明 ) .例 1 已知 sin x+ 2 cos y=2 ,求 2 sin x+ cos y的取值范围 .解 由条件得 sin x=2 ( 1 - cos y) ,1∴ 2 sin x+ cos y=4 - 3cos y,2由 1 ,有 2 | ( 1 - cos y) | =| sin x|≤ 1 ,∴ 12 ≤cos y≤ 32 .又 | cos y|≤ 1 ,∴ 12 ≤cos y≤ 1 . 3令 t=cos y,则由 2 ,3有2 sin x+ cos y=4 - 3t,其中 t∈ [12 ,1 ].令 f( t) =4 - 3t ( 12 ≤ t≤ 1 ) .易知 f( t)在 [12…  相似文献   

20.
我们知道,asinx+bcosx=a2+b2sin(x+φ),其中ab≠0,tanφ=ab,这个公式叫做辅助角公式.该公式可将异名三角函数化为同名三角函数,在解题中具有广泛的应用.现举例说明,以引起同学们的重视.一、求最值例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx的()(A)最大值是1,最小值是-1(B)最大值是1,最小值是-21(C)最大值是2,最小值是-2(D)解最大值是2,最小值是-1f(x)=sinx+3cosx=2sinx+3π,因为-2π≤x≤2π,所以-6π≤x+π3≤65π,所以-21≤sinx+3π≤1,所以-1≤f(x)≤2·故选(D).例2求函数y=sin2+2sinx·cosx+3cos2x的最小值,并写出使函数y取最小值的解x…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号