首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 17 毫秒
1.
对简单图G(V.E),f是从E(G)到{1,2,…,k}(k是自然数)的映射,若f满足:(1)()uv,uw∈E(G),v≠w,f(uv)≠f(uww);(2)()uv∈E(G).|C(u)\C(v)|≥1,并且|C(v)\C(u)|≥1;则称f是G的Smarandachely邻点边染色.文章给出了m(m=2,3,4)阶路与n阶路的联图的smarandachely邻点边色数.其中C(u)={f(uv)|uv∈E(G)且u≠v}.  相似文献   

2.
一个简单图G =(V ,E)被称为是巧妙的 (felicitous) ,若存在单射f: V(G)→ { 0 ,1,2 ,… ,|E| }使得对所有的边e=uv∈E(G) ,由f (e) =f(x) +f(y) (mod|E| )导出的映射f : E(G)→ { 0 ,1,2 ,… ,|E| - 1}是双射。设G是简单图 ,在G的每相邻两顶点之间都加入一个顶点后所得到的图称为G的细分图 ,文章证明了M bius梯的细分图是巧妙图  相似文献   

3.
设G是简单图,图G的一个k-点可区别IE-全染色(简记为k-VDIET染色),f是指一个从V(G)∪E(G)到{1,2,…,k}的映射,且满足:uv∈E(G),有f(u)≠f(v);u,v∈V(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.数min{k|G有一个k-VDIET染色}称为图G的点可区别IE-全色数,记为χviet(G).本文给出了完全二部图K6,n(7≤n≤243)的点可区别IE-全色数.  相似文献   

4.
代数 1.设Ⅰ=R,子集P={x|f(x)=0 },Q={x|g(x)=0},H={x|h(x)=0}则方程f~2(x) g~2(x)/h(x)=0的解集是( ) (A)P∩Q∩H (B)P∩Q (C)P∩Q∩H (D)P∩Q∪H 2.已知集合A={(x,y)|x y=1},映射f:A→B在f的作用下,点(x,y)的象是(2~X,2~y),则集合B是( ) (A){(x,y)|x y=2,x>0,y>0} (B){(x,y)|xy=1,x>0,y>0} (C){(x,y)|xy=2,x<0,y<0} (D){(x,y)|xy=2,x>0,y>0} 3.y=x~n(n∈Z)的图象只分布在第一、二象限,则n的集合一定是( ) (A)正偶数集合 (B)负偶数集合 (C)偶数集合 (D)以上都不是 4.函数y=2~x-1/2~x 1 ιn(x-1)/(x 1)是( ) (A)偶函数但不是奇函数  相似文献   

5.
若图G=(V,E),给定方向为D,A表示一个非平凡的且单位元为0的阿贝尔群,F(G,A)表示映射f:E(G)→A的集合.若对任意f∈F(G,A)存在映射c:V(G)→A,使得G中的每一条有向边e=uv∈E(G)(方向是u→v)满足c(u)-c(v)≠f(e),这时说图G是A-可染的.使得图G在方向D下是A-可染的,A的最小阶数为图G的群色数,记为χg(G).本文给出了伪-海临图的群色数不超过4.  相似文献   

6.
本文给出任意项级数收敛判定方法:如果级数∑_(n=1) a_n的项添加括号后所成的级数收敛且lim_(n→∞)a_n=0,则该级数收敛.由此获得:设C={a_i|a_i∈Z,i=0,1,…,k},D={a_(2j)|a_(2j)=2r_(2j)+1∈C,r_(2j)∈Z},E={a_(2j+1)|a_(2j+1)=2r_(2j+1)+1∈C,r_(2j+1)∈Z}且|D|=2p+1,|E|=2q,p,q∈Z,则级数∑_(n=1)∞ a_n的项添加括号后所成的级数收敛且lim_(n→∞)a_n=0,则该级数收敛.由此获得:设C={a_i|a_i∈Z,i=0,1,…,k},D={a_(2j)|a_(2j)=2r_(2j)+1∈C,r_(2j)∈Z},E={a_(2j+1)|a_(2j+1)=2r_(2j+1)+1∈C,r_(2j+1)∈Z}且|D|=2p+1,|E|=2q,p,q∈Z,则级数∑_(n=1)sinπ/2(a_0n∞sinπ/2(a_0nk+a_1nk+a_1n(k-1)+…+a_k)/n发散,否则收敛.同时得到:∑_(n=1)(k-1)+…+a_k)/n发散,否则收敛.同时得到:∑_(n=1)sinπ/2n∞sinπ/2n(2s+1)/n收敛,级数∑_(n=1)(2s+1)/n收敛,级数∑_(n=1)sinπ/2n∞sinπ/2n(2s)/n发散,其中s∈N.  相似文献   

7.
一个简单图G=(V,E)是κ-优美的(κ≥1为整数),如果存在单射f:V(G)→{0,1,2,…,|E| κ-1}使得对所有的边uv∈E(G),由f^*(uv)=|f(u)-f(υ)|导出的映射f^*:E(G)→{κ,κ 1,…,|E| κ-1}是双射,设G是简单图,在G的每相邻两顶之间都加入一个顶点后所得到的图称为G的细分图。文章证明了Moebius梯的细分图是κ-优美图。  相似文献   

8.
两个图G1和G2的笛卡尔积图G1×G2定义为如下的图:V(G1×G2)=V(G1)×V(G2),E(G1×G2)={(u1,u2)(v1,v2)|u1=v1且u2v2∈E(G2),或者u2=v2且u1v1∈E(G1).图的交叉数是图论中的一个重要拓扑参数,而确定图的交叉数是一个完全NP-问题.本文确定了若干树Tn(n≤4)与圈Cm的笛卡尔积图的交叉数.  相似文献   

9.
对简单图G(V,E)f,是从V(G)∪E(G)到{1,2,Λ,k}的映射,k是自然数,若f满足(1)u,v∈E(G),u≠,f(u)≠f(v);(2)uv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),\C(u)\C(v)\≥1并且|C(v)\C(u)|≥1;则称f是G的Smarandachely邻点全染色.本文给出了圈的平方图的的Smarandachely邻点全色数.  相似文献   

10.
一类优美图     
简单图G=(V(G),E(G)称为优美图(Graceful graph)如图存在G的一个标号f:(优美标号) V(G)—→{0,1,2……e}其中e=|E(G)|适合 (1)f是单一映射。 (2){|f(u)-f(v)||(u,y)∈E(G)}={1,2,……e}。 我们以动C_n表示一个有n个项点的圈,以C_n~1表C_n中任意两个不相邻接的顶点所得到的图,即C_n~1=C_nU{(u,v)},(u,v)E(G),我们称C_n~1是C_n的1——加边图。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号