首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

In this study, we examined the effects of a supervised, heart rate intensity prescribed walking training programme on cardiorespiratory fitness and glycaemic control in people with type 2 diabetes mellitus. After receiving local ethics approval, 27 individuals (21 males, 6 females) with type 2 diabetes were randomly assigned to an experimental (“walking”) or control group. Participants completed a Balke-Ware test to determine peak heart rate, peak oxygen consumption ([Vdot]O2peak), and peak gradient. The walking group then completed a 7-week (four sessions a week) supervised, heart rate prescribed walking training programme, whereas the control group continued daily life. After training, participants completed another Balke-Ware test. Fasting blood glucose and glycosylated haemoglobin were measured at rest. The results showed that walking training elicited 80% (s = 2) of peak heart rate and a rating of perceived exertion of 11 (s = 1). Peak heart rate and [Vdot]O2peak were higher in the walking than in the control group after training (P < 0.05). Based on the peak gradient before training, the respiratory exchange ratio was significantly lower (P < 0.05) and there was a strong trend for [Vdot]O2 (P = 0.09) and heart rate (P = 0.09) to be lower after training at the same gradient in the walking compared with the control group. These improvements increased walking peak gradient by 5 min (s = 4 min) compared with the control (P < 0.05). There was no change in fasting blood glucose or glycosylated haemoglobin after training. Despite no change in glycaemic control, heart rate prescribed walking improved peak and sub-maximal cardiorespiratory responses. The beneficial adaptations support the use of heart rate monitoring during walking in people with type 2 diabetes mellitus.  相似文献   

2.
The aim of the present study was to compare the effect of an increasing-distance, interval-training programme and a decreasing-distance, interval-training programme, matched for total distance, on aerobic and anaerobic physiological indices. Forty physical education students were randomly assigned to either the increasing- or decreasing-distance, interval-training group (ITG and DTG), and completed two similar relevant sets of tests before and after six weeks of training. One training programme consisted of increasing-distance interval-training (100–200–300–400–500?m) and the other decreasing-distance interval training (500–400–300–200–100?m). While both training programmes led to a significant improvement in VO2 max (ES?=?0.83–1.25), the improvement in the DTG was significantly greater than in the ITG (14.5?±?3.6 vs. 7.8?±?3.2%, p?<?.05). In addition, while both training programmes led to a significant improvement in all anaerobic indices (ES?=?0.83–1.63), the improvements in peak power (15.7?±?7.8 vs. 8.9?±?4.7), mean power (10.6?±?5.4 vs. 6.8?±?4.4), and fatigue index (18.2?±?10.9 vs. 7.0?±?14.2) were significantly greater in the DTG compared to the ITG (p?<?.05). The main finding of the present study was that beyond the significant positive effects of both training programmes on aerobic and anaerobic fitness, the DTG showed significant superiority over the ITG in improving aerobic and anaerobic performance capabilities. Coaches and athletes should therefore be aware that, in spite of identical total work, an interval-training programme might induce different physiological impacts if the order of intervals is not identical.  相似文献   

3.
Abstract

The purpose of this study was to evaluate the effects of moderate- to high-intensity resistance and concurrent training on inflammatory biomarkers and functional capacity in sedentary middle-aged healthy men. Participants were selected on a random basis for resistance training (n = 12), concurrent training (n = 11) and a control group (n = 13). They performed three weekly sessions for 16 weeks (resistance training: 10 exercises with 3 × 8–10 repetition maximum; concurrent training: 6 exercises with 3 × 8–10 repetition maximum, followed by 30 minutes of walking or running at 55–85% [Vdot]O2peak). Maximal strength was tested in bench press and leg press. The peak oxygen uptake ([Vdot]O2peak) was measured by an incremental exercise test. Tumour necrosis factor-α, interleukin-6 and C-reactive protein were determined. The upper- and lower-body maximal strength increase for both resistance (+42.52%; +20.9%, respectively) and concurrent training (+28.35%; +21.5%, respectively) groups (P = 0.0001).[Vdot]O2peak increased in concurrent training when comparing pre- and post-training (P = 0.0001; +15.6%). No differences were found in tumour necrosis factor-α and interleukin-6 for both groups after the exercise. C-reactive protein increased in resistance training (P = 0.004). These findings demonstrated that 16 weeks of moderate- to high-intensity training could improve functional capacity, but did not decrease inflammatory biomarkers in middle-aged men.  相似文献   

4.
The aim of this study was to compare the effects of two different intensity distribution training programmes (polarized (POL) and threshold (THR)) on aerobic performance, strength and body composition variables in ultra-endurance runners. Twenty recreationally trained athletes were allocated to POL (n?=?11; age: 40.6?±?9.7 years; height: 175.4?±?7?cm; weight: 73.5?±?10.8?kg; fat mass 18.4?±?6.0%; VO2max: 55.8?±?4.9?ml/kg/min) or THR group (n?=?9; age: 36.8?±?9.2 years; height: 178.5?±?4.2?cm; weight: 75.5?±?10.4?kg; fat mass 14.9?±?5.3%; VO2max: 57.1?±?5.2?ml/kg/min) and performed the 12 weeks training programme. Both programmes had similar total time and load but a different intensity distribution (POL?=?79.8?±?2.1% in Zone 1; 3.9?±?1.9% in Zone 2; 16.4?±?1.5% in Zone 3; THR?=?67.2?±?4.6% in Zone 1; 33.8?±?4.6% in Zone 2; 0% in Zone 3). Body composition, isokinetic strength and aerobic running performance were measured before and after each programme. Both groups decreased fat mass after training (POL= Δ–11.2%; p?=?.017; ES?=?0.32; THR= Δ–18.8%; p?p?=?0.003; ES?=?0.71) and 12?km/h (Δ–4.5%; p?=?.026; ES?=?0.73) and running time to exhaustion (Δ2.4%; p?=?.011; ES?=?0.33). No changes were observed in strength and no significant differences were observed between the group in any variable. Compared with THR distribution, 12 weeks of POL training efficiently improves aerobic performance in recreational ultra-endurance runners.  相似文献   

5.
Running downhill, in comparison to running on the flat, appears to involve an exaggerated stretch-shortening cycle (SSC) due to greater impact loads and higher vertical velocity on landing, whilst also incurring a lower metabolic cost. Therefore, downhill running could facilitate higher volumes of training at higher speeds whilst performing an exaggerated SSC, potentially inducing favourable adaptations in running mechanics and running economy (RE). This investigation assessed the efficacy of a supplementary 8-week programme of downhill running as a means of enhancing RE in well-trained distance runners. Nineteen athletes completed supplementary downhill (?5% gradient; n?=?10) or flat (n?=?9) run training twice a week for 8 weeks within their habitual training. Participants trained at a standardised intensity based on the velocity of lactate turnpoint (vLTP), with training volume increased incrementally between weeks. Changes in energy cost of running (EC) and vLTP were assessed on both flat and downhill gradients, in addition to maximal oxygen uptake (?O2max). No changes in EC were observed during flat running following downhill (1.22?±?0.09 vs 1.20?±?0.07?Kcal?kg?1?km?1, P?=?.41) or flat run training (1.21?±?0.13 vs 1.19?±?0.12?Kcal?kg?1?km?1). Moreover, no changes in EC during downhill running were observed in either condition (P?>?.23). vLTP increased following both downhill (16.5?±?0.7 vs 16.9?±?0.6?km?h?1 , P?=?.05) and flat run training (16.9?±?0.7 vs 17.2?±?1.0?km?h?1, P?=?.05), though no differences in responses were observed between groups (P?=?.53). Therefore, a short programme of supplementary downhill run training does not appear to enhance RE in already well-trained individuals.  相似文献   

6.
The hypothesis that endurance training impairs sprinting ability was examined. Eight male subjects undertook a 30‐s sprint test on a cycle ergometer before and after 6 weeks of cycling training for endurance. Maximum oxygen uptake (VO2 max) and submaximum endurance were determined to evaluate the influence of the training regimen on endurance performance. Endurance was defined as the time to exhaustion at a relative exercise intensity of 85% VO2 max. Maximum oxygen uptake was increased by 18% post‐training (3.29 ± 0.291 min–1 versus 3.89±0.491 min–1; P <0.01), but endurance at the same absolute work rate as pre‐training was increased by more than 200% (32.2 ±11.4 min versus 97.8 + 27.3 min; P <0.01). These improvements were accompanied by changes in the cardiovascular and metabolic responses to standard, submaximum exercise. Despite the improvements in endurance, neither performance during the cycle sprint test nor the increase in blood lactate concentration during the sprint was influenced by endurance training. For short‐term cycling training, these findings reinforce the concept of training specificity whilst demonstrating that decrements in sprint performance are not a necessary consequence of improved endurance.  相似文献   

7.
Irisin is a myokine that is thought to be secreted in response to exercise that may help to prevent obesity and maintain normal glucose metabolism. In this study we investigated the associations between irisin and glucose homeostasis in middle-aged, overweight and obese men (n?= 144) with impaired glucose regulation, and the impact of exercise training on these relationships. The participants underwent 12 weeks of resistance or aerobic (Nordic walking) exercise training three times per week, 60 minutes per session. Venous blood (n?=?105) and skeletal muscle samples (n?=?45) were obtained at baseline and post-intervention. Compared to controls, Nordic walking, but not resistance training, increased irisin levels in plasma (9.6?±?4.2%, P?=?0.014; 8.7?± 4.9%, P?=?0.087; respectively) compared to controls. When considering all subjects, baseline irisin correlated positively with atherogenic index of plasma (r?=?0.244, P?=?0.013) and 2-hour insulin levels (r?=?0.214, P?=?0.028), and negatively with age (r?=??0.262, P?=?0.007), adiponectin (r?=??0.240, P?=?0.014) and McAuley index (r?=??0.259, P?=?0.008). Training-induced FNDC5 mRNA changes were negatively correlated with HbA1c (r?=??0.527, P?=?0.030) in the resistance training group and with chemerin in the Nordic walking group (r?=??0.615, P?=?0.033). In conclusion, 12-weeks of Nordic walking was more effective than resistance training in elevating plasma irisin, in middle-aged men with impaired glucose tolerance. Thus, the change in irisin in response to exercise training varied by the type of exercise but showed limited association with improvements in glucose homeostasis.  相似文献   

8.
Abstract

Exercise is recognized as a frontline therapy for the prevention and treatment of type 2 diabetes (T2D) but the optimal type of exercise is not yet determined. We compared the effects of high-intensity interval training (HIIT) with moderate-intensity continuous training (MICT) for improvement of continuous glucose monitoring (CGM)-derived markers of glycaemic variability, and biomarkers of endothelial cell damage (CD31+ and CD62+ endothelial microparticles (EMPs)) within a population at elevated risk of developing T2D. Fifteen inactive overweight or obese women were randomized to 2 weeks (10-sessions) of progressive HIIT (n?=?8, 4–10X 1-min @ 90% peak heart rate, 1-min rest periods) or MICT (n?=?7, 20–50?min of continuous activity at ~65% peak heart rate). Prior and three days post-training, fasting blood samples were collected. Both HIIT and MICT improved glycaemic variability as measured by CGM standard deviation (HIIT: 0.82?±?0.39 vs. 0.72?±?0.33?mmol/L; MICT: 0.82?±?0.19 vs. 0.62?±?0.16?mmol/L, pre vs. post) and mean amplitude of glycaemic excursions (MAGE; HIIT: 1.98?±?0.81 vs. 1.41?±?0.90; MICT; 1.98?±?0.43 vs. 1.65?±?0.48, pre vs. post) with no difference between groups. CD62+ EMPs were lower following HIIT (187.7?±?65 vs. 174.9?±?55, pre vs. post) and MICT (170?±?60 vs. 160.3?±?59, pre vs. post) with no difference between groups. There was no change in 24-h mean glucose or CD31+ EMPs. Two weeks of both HIIT or MICT similarly decreased glycaemic variability and CD62+ EMPs in overweight/obese women at elevated risk of T2D.  相似文献   

9.
Abstract

Complex training, a combination of resistance training and plyometrics is growing in popularity, despite limited support for its efficacy. In pre- and early pubertal children, the study of complex training has been limited, and to our knowledge an examination of its effect on anaerobic performance characteristics of the upper and lower body has not been undertaken. Furthermore, the effect of detraining after complex training requires clarification. The physical characteristics (mean±s) of the 54 male participants in the present study were as follows: age 12.3 ± 0.3 years, height 1.57 ± 0.07 m, body mass 50.3 ± 11.0 kg. Participants were randomly assigned to an experimental (n = 33) or control group (n = 21). The training, which was performed three times a week for 12 weeks, included a combination of dynamic constant external resistance and plyometrics. After training, participants completed 12 weeks of detraining. At baseline, after training and after detraining, peak and mean anaerobic power, dynamic strength and athletic performance were assessed. Twenty-six participants completed the training and none reported any training-related injury. Complex training was associated with small increases (≤5.5%) in peak and mean power during training, followed by decreases of a similar magnitude (≤ ?5.9%) during detraining (P < 0.05). No changes or minor, progressive increases (≤1.5%) were evident in the control group (P > 0.05). In the experimental group, dynamic strength was increased by 24.3 – 71.4% (dependent on muscle group; P < 0.01), whereas growth-related changes in the control group varied from 0 to 4.4% (P > 0.05). For 40-m sprint running, basketball chest pass and vertical jump test performance, the experimental group saw a small improvement (≤4.0%) after training followed by a decline (≤ ?4.4%) towards baseline during detraining (P < 0.05), whereas the control group experienced no change (P > 0.05). In conclusion, in pre- and early pubertal boys, upper and lower body complex training is a time-effective and safe training modality that confers small improvements in anaerobic power and jumping, throwing and sprinting performance, and marked improvements in dynamic strength. However, after detraining, the benefits of complex training are lost at similar rates to other training modalities.  相似文献   

10.
Abstract

The purpose of this study was to analyze the specific training load during a resistance training (RT) programme designed to increase muscular hypertrophy in men and women. Thirty-four women (22.7 ± 4.1 years, 58.8 ± 11.9 kg, 162.6 ± 6.2 cm and 22.1 ± 3.6 kg.m?2) and 30 men (22.7 ± 4.4 years, 68.4 ± 9.0 kg, 174.5 ± 6.6 cm and 22.5 ± 2.4 kg.m?2) underwent a supervised RT programme that was divided into two phases of 8 weeks each. Training consisted of 10–12 exercises performed with three sets of 8–12 repetitions at repetition maximum resistances performed 3 times per week on nonconsecutive days. There was a significant (P < 0.05) main effect for gender by time interaction for average training load of all the exercises performed in the first 8 weeks of RT with women showing a higher relative increase than men (+43.6% vs. +32.5%, respectively). This result was not observed during the second 8-week phase of the RT programme during which no significant gender by time interaction (P > 0.05) was shown with both genders having a similar relative increase (+28.7% vs. +24.3%, respectively). Women had a higher increase than men in specific average training load of the upper limb exercises during both the first 8 weeks of training (+30.2% vs. +26.6%, respectively) and the second 8 weeks of training (+31.1% vs. +25.3%, respectively). We conclude that the adaptation in specific training load is influenced by gender.  相似文献   

11.
We tested a simple and compact device designed for manual resistance training in conditions of microgravity (Self-Powered Rope Trainer Duo (SPoRT Duo)) to increase muscle performance. Twenty-four participants (20.8 ± 2.1 years) were randomly assigned to a manual resistance group (n = 12) and a free-weight group (n = 12). Participants performed eight exercises (three sets; 8–12 efforts) either with free weights or the SPoRT Duo twice a week for 6 weeks. Maximal isometric force of trunk flexion, back extension and chest press increased (P at least 0.01, d at least 0.52) both in the manual resistance group (18.4% ± 15.0%; 32.7% ± 22.7%; 15.3% ± 9.7%) and free-weight group (18.0% ± 13.9%; 26.6% ± 28.9%; 13.3% ± 7.6%). The change in maximal isometric force of wide grip row in both groups (d at best 0.38) did not reach statistical significance (P at best 0.08). The squat one-repetition-maximum increased in the manual resistance group (29.8% ± 22.1%) and the free-weight group (32.4% ± 26.6%). Jump height, determined by a jump-and-reach test, increased in the free-weight group (9.8% ± 13.2%) but not in the manual resistance group (2.0% ± 8.5%). Manual resistance training was equally effective in increasing strength as traditional resistance training with free weights. This apparatus is a useful addition to current in-flight exercise systems.  相似文献   

12.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

13.
The effects of training on FNDC5/irisin and its association with fitness and metabolic marker improvements induced by training have been poorly investigated in humans. Thus, the present study assessed the effects of combined training (CT) on FNDC5/irisin levels, metabolic markers and fitness adaptations in obese men. Middle-age obese men (age 49.13?±?5.75, body mass index (BMI) 30.86?±?1.63) were randomly distributed in the CT group (n?=?12) and control group (CG n?=?10). The CT consisted of strength followed by aerobic training, 3 times/week, for 24 weeks. Body composition, physical fitness, plasma FNDC5/irisin, biochemical markers and metabolic scores/index were evaluated. CT maintained FNDC5/irisin levels (µg/mL) (pre: 4.15?±?0.32, post: 4.21?±?0.32; p?=?.96) and improved body composition, metabolic and physical fitness markers. In the CG, decreased FNDC5/irisin (µg/mL) (pre: 4.36?±?0.23, post: 3.57?±?0.94; p?=?.01) and reduced strength (supine exercise/kg) (pre: 71?±?14.7, post: 60.1?±?14.05; p?<?.01) were observed, along with a trend to increase HOMA-IR (pre: 2.63?±?1.11, post: 3.14?±?1.27; p?=?.07) and other indicators of metabolic deterioration. An inverse correlation was found between the change (Δ%) in levels of FNDC5/irisin and Δ% glucose, Δ% total cholesterol, Δ% triglycerides and Δ% waist circumference, in addition to a positive relation with Δ% muscle strength. In conclusion, CT maintained FNDC5/irisin levels and provided metabolic and fitness benefits. The correlation between FNDC5/irisin changes and metabolic parameters, as well as the FNDC5/irisin reduction associated with fitness and metabolic worsening in the CG, suggests a relationship between FNDC5/irisin and a healthy metabolic status in humans.  相似文献   

14.
This study aimed to compare the effect of 6 weeks of resistance training or combined resistance training and change of direction exercises on physical performance and motor skills in futsal players. Thirty-four futsal players were divided into full squat group (SG, n = 12), combined full squat and change of direction exercises group (S+CDG, n = 12) and control group (CG, n = 10). The resistance training for SG consisted of full squat with low load (~45–58% 1RM) and low volume (4–6 repetitions), whereas the S+CDG performed the same resistance training program combined with loaded change of direction. Sprint time in 10 and 20 m, change of direction test, countermovement vertical jump (CMJ) height, maximal strength and force–velocity relationship in full squat exercise, kicking speed ball (BSmean) and repeated sprint ability (RSAmean) were selected as testing variables. Both experimental groups showed significant improvements for CMJ, BSmean and all strength parameters. Only SG resulted in significant sprint gains, whereas S+CDG also achieved significant improvements in RSAmean. The CG remained unchanged after training period. No significant differences were found between both experimental groups. These findings suggest that only 12 sessions of either lightweight resistance training alone, lifting the load at maximal intended velocity or combined with change of direction exercises is enough to improve several physical and skills capacities critical to futsal performance in adult players.  相似文献   

15.
目的:通过分析上海地区不同项群优秀青少年有氧能力,寻找不同项群有氧能力特点。方法:选择上海市2003—2014年一线、二线运动员测试数据库,从中筛选88名16岁以上男性,年龄为(17.5±1.2)岁,103名15岁以上女性,年龄为(16.4±1.1)岁,均为国家二级以上运动员,对其最大摄氧量绝对值和相对值进行统计分析,使用单因素方差分析以及Z分值等方法比较不同性别各项群间有氧运动能力特点。结果:耐力项群最大摄氧量绝对值显著高于隔网对抗(P<0.05)与格斗对抗(P<0.01)。男性各项群间最大摄氧量相对值无显著差异;女性耐力项群最大摄氧量相对值显著高于同场对抗(P<0.01)、隔网对抗(P<0.01)与格斗对抗(P<0.01);女性同场对抗项群最大摄氧量相对值显著高于格斗对抗(P<0.05)。结论:耐力项群最大摄氧量绝对值高于其他项群;体能主导类项群最大摄氧量相对值高于技能主导类项群;同场对抗项群最大摄氧量绝对值优于相对值,其余项群最大摄氧量相对值和绝对值同步。为科学训练提供有力数据支持,教练员可以结合项群有氧运动能力特点,判断运动员的有氧工作能力水平,从而针对性地制定训练计划,提高整体竞技水平。  相似文献   

16.
High Intensity Interval Training (HIIT) can be performed with different effort to rest time-configurations, and this can largely influence training responses. The purpose of the study was to compare the acute physiological responses of two HIIT and one moderate intensity continuous training (MICT) protocol in young men. A randomised cross-over study with 10 men [age, 28.3?±?5.5years; weight, 77.3?±?9.3?kg; height, 1.8?±?0.1?m; peak oxygen consumption (VO2peak), 44?±?11?mL.kg?1.min?1]. Participants performed a cardiorespiratory test on a treadmill to assess VO2peak, velocity associated with VO2peak (vVO2peak), peak heart rate (HRpeak) and perceived exertion (RPE). Then participants performed three protocols equated by distance: Short HIIT (29 bouts of 30s at vVO2peak, interspersed by 30s of passive recovery, 29?min in total), Long HIIT (3 bouts of 4?min at 90% of vVO2peak, interspersed by 3?min of recovery at 60% of vVO2peak, 21?min in total) and MICT (21?min at 70% of vVO2peak). The protocols were performed in a randomised order with ≥48 h between them. VO2, HRpeak and RPE were compared. VO2peak in Long HIIT was significantly higher than Short HIIT and MICT (43?±?11 vs 32?±?8 and 37?±?8?mL.kg?1.min?1, respectively, P?P?P?2, HR and RPE than Short HIIT and MICT, suggesting a higher demand on the cardiorespiratory system. Short HIIT and MICT presented similar physiologic and perceptual responses, despite Short HIIT being performed at higher velocities.  相似文献   

17.
Abstract

This study compared the use of sand and grass training surfaces throughout an 8-week conditioning programme in well-trained female team sport athletes (n = 24). Performance testing was conducted pre- and post-training and included measures of leg strength and balance, vertical jump, agility, 20 m speed, repeat speed (8 × 20 m every 20 s), as well as running economy and maximal oxygen consumption (VO2max). Heart rate (HR), training load (rating of perceived exertion (RPE) × duration), movement patterns and perceptual measures were monitored throughout each training session. Participants completed 2 × 1 h conditioning sessions per week on sand (SAND) or grass (GRASS) surfaces, incorporating interval training, sprint and agility drills, and small-sided games. Results showed a significantly higher (P < 0.05) HR and training load in the SAND versus GRASS group throughout each week of training, plus some moderate effect sizes to suggest lower perceptual ratings of soreness and fatigue on SAND. Significantly greater (P < 0.05) improvements in VO2max were measured for SAND compared to GRASS. These results suggest that substituting sand for grass training surfaces throughout an 8-week conditioning programme can significantly increase the relative exercise intensity and training load, subsequently leading to superior improvements in aerobic fitness.  相似文献   

18.
Although exercise promotes beneficial effects in diabetic patients, some studies have questioned the degree of their importance in terms of the increase in total energy expenditure. In these studies, the decrease of physical activity levels (PAL) was referred as “compensatory effect of exercise”. However, our aim was to investigate whether aerobic exercise has compensatory effects on PAL in type 2 diabetes patients. Eight volunteers (51.1 ± 8.2 years) were enrolled in a supervised exercise programme for 8 weeks (3 d · wk?1, 50–60% of VO2 peak for 30–60 min). PAL was measured using tri-axial accelerometers in the 1st, 8th and 12th weeks. Biochemical tests, cardiorespiratory fitness, anthropometric assessment and body composition were measured in the 2nd and 11th weeks. Statistical analysis was performed using non-parametric tests (Friedman and Wilcoxon, P < 0.05). We found no significant differences in PAL between intervention periods, and participants spent the majority of their awake time in sedentary activities. However, the exercise programme generated a significant 14.8% increase in VO2 peak and a 15% reduction in fructosamine. The exercise programme had no compensatory effects on PAL in type 2 diabetes patients, but improved their cardiorespiratory fitness and glycaemic control.  相似文献   

19.
The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed.

Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5–3.0)). Plasma low-density lipoprotein–cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (= 2.0 (0.7–3.2) and 1.8 (0.5–3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (= 2.1 (0.8–3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.  相似文献   


20.
Abstract

The effect of altering the rest period on adaptations to high-repetition resistance training is not well known. Eighteen active females were matched according to leg strength and repeated-sprint ability and randomly allocated to one of two groups. One group performed resistance training with 20-s rest intervals between sets, while the other group employed 80-s rest intervals between sets. Both groups performed the same total training volume and load. Each group trained 3 days a week for 5 weeks [15- to 20-repetition maximum (RM), 2 – 5 sets]. Repeated-sprint ability (5×6-s maximal cycle sprints), 3-RM leg press strength, and anthropometry were determined before and after each training programme. There was a greater improvement in repeated-sprint ability after training with 20-s rest intervals (12.5%) than after training with 80-s rest intervals (5.4%) (P = 0.030). In contrast, there were greater improvements in strength after training with 80-s rest intervals (45.9%) than after training with 20-s rest intervals (19.6%) (P = 0.010). There were no changes in anthropometry for either group following training. These results suggest that when training volume and load are matched, despite a smaller increase in strength, 5 weeks of training with short rest periods results in greater improvements in repeated-sprint ability than the same training with long rest periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号