首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
<正>题目过抛物线y2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2,x_1x_2=p2,x_1x_2=p2/4.此抛物线性质问题的证法很多,下面是笔者在平时的教学中,归纳出几种方法,供读者欣赏.  相似文献   

2.
设△OAB的顶点坐标为O(0,0),A(x_1,y_1),B(x_2,y_2)(按逆时针方向排列),则x_1y_1-x_2y_1=|x_1 y_1 x_2 y_2|=|0 0 1 x_1 y_1 1 x_2 y_2 1|=2S_(△OAB)=OA·OBsin∠O.应用这个方法可以把几类条件代数极值问题化为几何极值问题来处理. 例1.设ax by=c(a,b,c∈R~ ,x,y∈R~-),求f(x,y)=mx~(1/2) ny~(1/2)(m,n>0)的极值. 解考虑点A((ax)~(1/2),-(by)~(1/2)),B(n/b~(1/2),m/a~(1/2)),∠AOB=θ,则  相似文献   

3.
抛物线y~2=2px的焦点弦为AB,则y_Ay_B=-p~2,这是抛物线焦点弦的一条常用性质.对一般的弦而言,也有类似的性质,这里,我们给出一组充要条件,揭示弦的性质. 若AB为抛物线y~2=2px的弦,其中A(x_1,y_1)、B(x_2,y_2).则有: ∠AOB为直角x_1x_2 y_1y_2=0 y_1y_2 Ap~2=0; ∠AOB为锐角x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0; ∠AOB为钝角x_1x_2 y_y_2<0 y_1y_2(y_1y_2 4p~2)<0. 证明:cos∠AOB=|AO|~2 |BO|~2-|AB|~2/2|AO|·|BO|=2(x_1x_2 y_1y_2)/2|AO|·|BO|,故∠AOB为直角cos∠AOB=0x_1x_2 y_1y_2=0; ∠AOB为锐角cos∠AOB>0 x_1x_2 y_1y_2>0; ∠AOB为钝角cos∠AOB<0 x_1x_2 y_1y_2<0. 又A、B在抛物线上,故y_1~2=2px_1,y_2~2=2px_2,从而(y_1y_2)~2=4p~2x_1x_2,故x_1x_2 y_1y_2=1/4p~2·y_1y_2(y_1y_2 4p~2). 从而 x_1x_2 y_1y_2=0 y_1y_2 4p~2=0(显然y_1y_2≠0), x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0, x_1x_2 y_1y_2<0 y_1y_2(y_1y_2 4p~2)<0,得证. 应用这组充要条件,可方便地解决与抛物线弦相关的一类问题.  相似文献   

4.
定理:设抛物线方程y~2=2px,若过抛物线焦点F(p/2,0),且倾斜角为α(α≠0)的直线,交抛物线于M(x_1,y_1)、N(x_2,y_2),则M、N点的坐标存在如下关系:x_1·x_2=p~2/4 ①y_1·y_2=-P~2 ②证明:过焦点F(p/2,0)且倾斜角为α的直线方程为:  相似文献   

5.
求已知点P(x_0,Y_0)关于直线y=kx m的对称点P'(x,y),通常是解方程组 {1/2(y y_0)=k·1/2(x x_0) m (y-y_0)/(x-x_0)=-(1/k) 但当k=±1时,可直接用对称轴方程y=±x m即x=±y±m代换以求P'点的位置。定理1 若P'(x,y)是点P(x_0,y_0)关于直线y=x m的对称点,则 {x=y_0-m, y=x_0 m。证明比较简单,兹从略。特别地,当m=0时,点p(x_0,y_0)和点p'(y_0,x_0)关于直线y=x对称。推论1 曲线f(x,y)=0关于直线y=x m对称的曲线方程是f(y-m,x m)  相似文献   

6.
例1 已知分别过抛物线 y~2=2px 上点 A(x_1,y_1),B(x_2,y_2)的两条切线相交于 P(x′,y′).求证:x′=(y_1y_2)/2p,y′=(y_1 y_2)/2.证明如图1,由文献[1]可知过 A,B 两点的切线方程为:l_1:y_1y=p(x x_1);l_2:y_2y=p(x x_2).又 P 在 l_1,l_2上,有y_1y′=p(x′ x_1); (1)y_2y′=p(x′ x_2). (2)式(1)-式(2)得(y_1-y_2)y′=p(x_1-x_2).又 x_1=y_1~2/2p,x_2=y_2~2/2p,代入上式整理得y′=1/2(y_1 y_2), (3)将式(3)代入式(1)得1/2y_1(y_1 y_2)=px′ py_1~2/2p,由此得 x′=y_1y_2/2p,所以  相似文献   

7.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

8.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

9.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

10.
运用题组进行教学,可以把有关知识综合串联起来,有助于开拓学生的思路,培养综合运用的能力。本文介绍“圆锥曲线”中的两个题组。 (一)抛物线的焦点弦有着广泛的应用,围绕着焦点弦、切线、准线等可以组成很多题目。为了帮助学生理清头绪,我们首先复习统编教材上证过的两个题:(1)已知经过抛物线y~2=2px上两点P_1(x_1,y_1)和P_2(x_2,y_2)的两条切线相交于点M(x_0,y_0)。求证x_0=(y_1y_2)/(2p),y_0=(y_1 y_2)/2。(解几课本第120页第6题)(2)过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y_1、y_2。求证y_1y_2=-p~2。(解几课本第111页第8题)在学生掌握了这两题的证法和结论  相似文献   

11.
命题一则     
在平面直角坐标系中,椭圆的标准方程是x~2/a~2+y~2/b~2=1 (1)一般方程则为φ(x,y)(?)Ax~2+BXy+Cy~2+DX+Ey+F=0 , (2)其中判别式B~2-4ACO.命题 若P(x_1,y_1)是椭圆(1)的外点,则x_1~2/a~2+y_1~2/b~2>1;若P(x_1,y_1)是椭圆(1)的内点,则x_1~2/a~2+y_1~2/b~2<1,一般地,若P(m,n)是椭圆(2)的外点则φ(m,n)>0若P(m,n)是椭圆(2)的内点则φ(m,n)相似文献   

12.
表示中心在P(x_0,y_0),半径为R的正2n 1边形。 定理3 记t_i=|f_i| (-1)~itg(π/(2n 1))g_i,其中f_i,g_i同定理2,则方程  相似文献   

13.
本文给出用极值求两图形间的距离的方法。一、求点到直线的离距。 1.在平面上,求点A(x_1,y_1)到直线l:y=kx+b的距离d。解:在直线l上任取一点p(x,y),则 |AP|=((x-x_1)~2+(y-y_1)~2)~(1/2) =((x-x_1)~2+(kx+b-y_1)~2)~(1/2) =((1+k~2)x~2-2(x_1+ky_1-kb)x+x_1~2+(y_1-b)~2)~(1/2) =((1+k~2)(x-(x_1+ky_1-kb)/(1+k~2))~2+(kx_1-y_1+b)~2/(1+k~2))~(1/2)当x=(x_1+ky_1-kb)/(1+k~2)时,|AP|取极小值d。所以d=|AP|极小=|kx_1-y_1+b|/(1+k~2)~(1/2)=0给出,则k=-A/B,b=-C/B,于是 d=|-(A/B)x_1-y_1-C/B|/(1+(A~2/B~2))~(1/2) =|Ax_1+By_1+C|/(A~2+B~2)~(1/2)  相似文献   

14.
贵刊1983年第5期刊登了《一类直线方程的四种求法》一文,该文介绍了解决如下问题的四种方法:过二次曲线C:F(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部[指包含焦点的平面区域(不包括周界)]已知点M(x_0,y_0)作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得点M平分弦AB。对于这类问题,可作如下推广:过M作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得M点为弦AB的n等分点。当n≥3时,用《一类直线方程的四种求法》一文介绍的四种方法来求  相似文献   

15.
<正>设A(x_1,y_1),B(x_2,y_2),则A、B两点之间的线段长度一般为:AB=((x_1-x_2)2+(y_1-y_2))2+(y_1-y_2))(1/2).当两点的横坐标相同时,AB=|y_1-y_2|;当两点的纵坐标相同时,AB=|x_1-x_2|.线段长度的不同表示方式可以简化解题过程,使问题变得简单而清晰,并轻松做到不重不漏.一、简化分类讨论例1(2015年衢州中考题)如图1,已知  相似文献   

16.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

17.
我们知道,若P_1(x_1,y_1),P_2(x_2,y_2),P(x,y),且P分P_1P_2的比为λ(λ=-1),见y=y_1 λy_2/1 λ或λ=y-y_1/y_2-y。由公式易得: 1°.λ>0(?)y介于y_1、y_2之间。  相似文献   

18.
一、本文首先指出同济大学数学教研组编《高等数学》(第二版)中,关于多元函数极值充分条件证明有错误。这一错误在樊映川等《高等数学讲义》中也同样存在。在上述《高等数学》(下册)第72页,将函数z=f(x,y)在(x_0,y_0)处全增量写成:△f=f(x_0 h,y_0 k)-f(x_0,y_0) =1/2(Ah~2 2 Bhk Ck~2) 1/2(a_1h~2 2a_2hk a_3k~2)其中A=f_(xx)(x_0,y_0), B=f(xy)(x_0,y_0),C=f(yy)(x_0,y_0), θ_1=f_(xx)(x_0 θh,y_0 θk)-A θ_2=f_(xy),(x_0 θh,y_0 θk)-B θ_3=f(yy)(x_0 θh,θy_0 θk)-Ca_1,a_2,a_3均为当ρ=(h~2 k~2)~(1/2)→0时的无穷小量。该书编者提出以下的论断作为证明的出发点:“当P=Ah~2 2 Bhk Ck~2(?)0时,因为P是  相似文献   

19.
在高二《解析几何》课本总复习题中有这样一道习题:“已知椭圆x~2/(16)+y~2/9=1,求椭圆内接正方形的面积.”(P 192) 对于这一道题,通常解法如下: 设椭圆内接正方形一个顶点坐标为(x_1,y_1),则另外三个顶点坐标为(-x_1,y_1)(-x_1,-y_1),(x_1,-y_1),再由正方形的特征可得|x_1|=|y_1|,代入椭圆方程立得:x_1~2/(16)+x_1~2/9=1,即得:x_1~2=(144)/(25) S正方形=4x_1~2=(576)/(25)  相似文献   

20.
每期一题     
题:若:a、b、c为正数,试求函数y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)的极小值。解法一复数法运用代数中学过的复数模不等式 |z_1|+|z_2|≥|z_1+z_2|。设 z_1=x+ai x_2=(c-x)+bi ∴|z_1|=(x~2+a~2)~(1/2) |z_2|=((c-x)~2+b~2)~(1/2) ∵|z_1|+|z_2|≥|z_1+z_2| ∴y=|z_1|+|z_2|≥|z_1+z_2| =|x+ai+c-x+bi| =|c+(a+b)i|=(c~2+(a+b)~2)~(1/2) ∴y_min=(c~2+(a+b)~2)~(1/2)。解法二代数法运用不等式(x_1~2+y_1~2)~(1/2)+(x_2~2+y_2~2)~(1/2)≥((x_1+x_2)~2+(y_1+y_2)~2)~(1/2)其中等号仅当x_1/x_2=y_1/y_2时成立。∴y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号