首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用典型的二维材料α-MoO_3为前驱物,设计并合成了一种特殊的α-MoO_3层和石墨烯插层复合材料.三明治型的MoO_3/C杂化电极材料具有宽的离子扩散通道,低的电荷迁移电阻和稳定的结构,因此具有优异的储能特性.在1 A·g~(-1)的电流密度下,MoO_3/C复合物的比容量为331 F·g~(-1);10 A·g~(-1)时,比容量保持率达到71%.除此,该材料还具有良好的循环稳定性,在1 000~10 000圈的循环过程中比容量基本无衰减.优异的倍率性能使该电极材料具有高功率密度(12.0 k W·kg~(-1))和能量密度(41.2 Wh·kg~(-1)).  相似文献   

2.
设计了一种通过碳基质限域控制二维材料生长的方法,制备了多孔MoS_2/C杂化复合物.该材料具有低的电荷迁移阻力、众多的电化学活性位点以及稳定的结构,因此具有优异的储电性能.该电极材料在4 A·g~(-1)电流密度下,具有418 F·g~(-1)的高比容量,以及2000圈循环后容量保持率为104%的优异循环稳定性.  相似文献   

3.
本文采用水热法制备CoMoO_4作为超级电容器电极材料,研究了CoMoO_4电极材料的形貌和电化学性能.结果显示,350℃退火样品SEM图显示CoMoO_4样品为纳米棒;CoMoO_4材料在1 A·g(-1)的电流密度下比容量为155 F·g(-1)的电流密度下比容量为155 F·g(-1),并在渐变的电流密度下连续充放电循环1 600次后电容量衰减了9.8%.结论:CoMoO_4材料具有良好的电化学性能.  相似文献   

4.
MnO负极材料由于其比容量高、资源丰富、成本低而备受关注.然而,在脱锂/嵌锂过程中,体积变化大(170%)仍然是MnO材料面临的严重问题,导致其倍率性能差,容量衰减快.在碳纳米纤维(CNF)网络中生长均匀的MnO晶体,CNF的束缚作用可以有效地减小MnO在循环过程中的体积变化.本文设计并合成了CNF/MnO柔性锂离子电池电极,碳纳米纤维在锂离子脱出/嵌入过程中发挥导电通道的作用,并且弹性束缚MnO纳米颗粒.当电流密度为0.2 A·g~(-1)和1 A·g~(-1)时,CNF/MnO作为无粘合剂的负极,在第100次循环后比容量分别保持在983.8 mAh·g~(-1)和600 mAh·g~(-1),远高于纯MnO和纯CNF负极.该工作为高可逆锂储存装置中具有潜在应用价值的CNF/MnO新型柔性无粘合剂负极提供了一种简便且可扩展的合成方法.  相似文献   

5.
以氧化石墨烯修饰的铁基普鲁士蓝类似物(PBA)为前驱体,低温硒化制备出石墨烯(G)和氮掺杂碳(NC)共包覆FeSe2纳米颗粒复合材料(FeSe_2/NC@G).所得到的FeSe2/NC@G具有良好的储钠性能,在5.0 A·g~(-1)时,其可逆容量为331 mAh·g~(-1).在2.0 A·g~(-1)条件下循环1 000圈后,可逆容量仍有323 mAh·g~(-1)(容量保持率为82%).此外,钠离子全电池也显示了优越的倍率性能和循环稳定性.本工作为新型纳米结构TMSs的合成在储能系统中的应用提供了一定的实验基础.  相似文献   

6.
通过一步水热法合成了Fe_2O_3/GO复合材料,得到的氧化铁能很好地与石墨烯复合在一起,并且具有比同方法得到的纯Fe_2O_3更小的颗粒直径.Fe_2O_3/GO复合材料表现出了很好的电化学性能,在1.0 A·g~(-1)的电流密度下能够释放出高达726/715 mAh·g~(-1)的放/充容量,其循环稳定性也得到大大提高.石墨烯的有效复合不仅为电极材料提供了高的导电性,而且有效缓解反复充放电过程中体积效应带来的应力集中,防止材料粉化脱落,从微观结构的改进中有效提升了材料的宏观电化学性能.  相似文献   

7.
采用间苯二酚、三聚氰胺和甲醛为原料,嵌段共聚物F127为组装剂,在水热条件下进行聚合和组装制备了具有纺锤体形貌的树脂纳米材料,将其进行热处理制备了介孔碳纳米材料并研究了其超级电容器性能.介孔碳纳米球具有相对宽的孔径分布,比表面积可达676 m2·g-1.在电流密度为0.1 A·g-1时,碳纳米材料的比电容为236 F·g-1.且在0.1~1 A·g-1的电流密度下,电容的保持率为79%,该介孔碳纳米材料在超级电容器上具有很好的应用前景.  相似文献   

8.
《河西学院学报》2019,(2):16-23
采用水热合成法,在Ni-Co层状双氢氧化物中掺杂不同浓度的钇.通过傅里叶变换红外光谱法、X射线粉末衍射法、扫描电子显微镜、比表面积和孔隙度分析仪对其结构及微观形态进行表征,电化学工作站对目标材料进行电化学性能测试.结果表明:掺杂浓度为0.03mmolY~(3+)时NiCo双金属氢氧化物效果最优,比表面积可达74.9198±0.2762 m~2·g~(-1),比电容值为380F·g~(-1),电容保持率达到了70%.说明掺杂Y~(3+)可以有效改善Ni-Co层状双氢氧化物电化学性能,可以成为良好的超级电容器储备材料.  相似文献   

9.
以废旧手机锂电池为前驱体回收负极石墨粉,再利用负极石墨粉制备的氧化石墨为原料,在不同温度条件下,采用高温热膨胀法制备了一系列膨胀石墨,并利用热重分析仪(TG)、扫描电镜(SEM)和恒电流充放电等对其进行了结构表征和电化学性能测试.实验测试结果表明:该类膨胀石墨最佳热膨胀制备温度为630℃;在电流密度0.5 A·g~(-1)时,膨胀石墨EG-630比电容量高达242 F·g~(-1);恒电流充放电循环1 000圈后,比电容保持率为101%,表现出良好的电化学性能.  相似文献   

10.
采用固相反应法制备碳包覆的磷酸钒锂材料,研究不同的柠檬酸添加量以及一次球磨前后加入顺序对磷酸钒锂性能的影响.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、电池测试仪、电化学工作站等测试方法对Li_3V_2(PO4)_3/C复合正极材料的晶体结构、形貌特征、电化学性能、动力学性能做了分析.结果表明:柠檬酸的添加量以及柠檬酸加入顺序对磷酸钒锂复合材料的电化学性能有明显的影响.当一次球磨之前添加柠檬酸且其量与钒的摩尔比为1时得到的磷酸钒锂复合材料具有最佳的性能,电化学性能测试显示,在电压3.0~4.3 V范围内0.5 C倍率时,放电比容量达到128 mAh·g~(-1)(理论比容量为133 mAh·g~(-1)),并且当倍率达到10 C时,放电比容量仍有105 mAh·g~(-1),甚至当倍率达到20 C时,放电比容量仍高达95 mAh·g~(-1),循环伏安法和交流阻抗分析显示出有较好的离子扩散率和较小的阻抗.  相似文献   

11.
为了抑制水系锌离子电池正极MnO2材料在充放电过程中发生的材料坍塌,该研究采用水热法将Ni2+插层到δ-MnO2(NMC)中,并且对其进行碳包覆.制备的NMC材料微观结构发生了改变,其层间距与比表面积变大,为Zn2+提供了更多的活性位点;经过碳材料包覆后NMC材料的导电率得到了提高.将该材料用作水系锌离子电池正极活性材料,在0.2 A·g-1电流密度下,电池经过100次充放电后容量保持率为90%,表现出较好的循环性能.在大电流密度下(1 A·g-1),经过800次循环后容量保持率仍高达80%.因此,对δ-MnO2进行Ni2+掺杂并进行碳包覆,为实现水系锌离子电池的高能量密度提供了新的解决方案.  相似文献   

12.
V2O5被认为是一种有潜力成为商业锂离子电池电极的材料.本文合成了一种原位聚苯胺(PANI)插层V2O5复合材料以增强锂离子在材料中的脱/嵌能力.该复合材料V-O层的层间距显著增大(13.34?),为Li+的快速扩散提供了通道.同时,PANI本身的高导电性,提高了V2O5/PANI复合材料的电子电导率,V2O5/PANI复合材料的储锂性能也得到改善.在1 A·g-1的电流密度下循环450圈,V2O5/PANI的比容量达到760.1 mAh·g-1.此外,该复合材料展现出高赝电容行为,具有较好的高倍率性能,在10 A·g-1的高电流密度下循环1600圈,依旧有261.0 mAh·g-1可逆比容量.  相似文献   

13.
采用化学氧化聚合法,以植酸作为掺杂酸,使用过硫酸铵(APS)为引发剂制备了植酸掺杂的聚苯胺电极材料。聚苯胺呈纳米棒状。结果表明,制得的聚苯胺比电容在1A/g的电流密度下可以达到480F/g。1000次循环后,比电容剩余为初始值的78%。  相似文献   

14.
设计并合成了一种新型的核-壳结构材料磷酸钴锂异质层包覆镍锰酸锂.橄榄石型的磷酸钴锂纳米颗粒均匀地生长于尖晶石型镍锰酸锂表面,磷酸钴锂包覆层不仅能够有效地诱导镍锰酸锂表面产生微量Mn~(3+),同时还能够减缓Mn~(3+)的歧化反应并阻止锰的溶出.NM-CP5样品具有最佳的电化学性能,在0.5 C的放电倍率下,容量可达137 mAh·g~(-1),充放电100次后容量仍保持132 mAh·g~(-1)(容量保持率达98.5%).  相似文献   

15.
利用水热法成功合成了Fe2O3/石墨烯(RGO)锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe2O3和集流体的作用.电化学性能测试表明,180℃下得到的Fe2O3/RGO具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g(电流密度为40mA/g),电流密度增加到800mA/g时,放电比容量维持在406.6mAh/g,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe2O3/RGO有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.  相似文献   

16.
以孔径为80 nm的大孔有序碳材料(C80)为基体,采用98% HNO3浸泡氧化改性,研究酸化对多孔碳成分、结构与电化学性能的影响.结果表明:经98% HNO3氧化改性,多孔碳的孔壁发生膨化,比表面积减小,表面含氮、氧官能团含量增加,进而导致其电化学性能也大幅度地提高;在1 mol/LH2 SO4电解液中,酸化后多孔碳的比电容可达177.6 F/g(电流密度为0.1A/g),与同一电流密度下的C80相比,比电容提高了50F/g;而以6 mol/L KOH做电解液,比电容提高了36.85 F/g.  相似文献   

17.
将两个典型的二维材料MoO3和膨胀石墨(EG)共球磨处理,一步实现两者的剥离和复合得到少层MoO3薄片与碳纳米片均匀杂化的结构.研究了球磨珠子的直径对球磨切向力和冲击力,进而对剥离效率的影响.结果表明:2 mm的球磨珠产生的球磨切向力和冲击力能产生最理想的协同效应.在此条件下得到的产物中,MoO3薄片层数少、尺寸小且在碳层上分布均匀,而碳层的厚度基本小于10层.因此,该杂化材料结构稳定且能提供更多的锂离子储存位点,表现出了高的倍率性能(1000 mA·g-1电流密度下比容量为817 mAh·g-1)和循环稳定性(200 mA·g-1电流密度下,循环70圈,容量保持为810 mAh·g-1).  相似文献   

18.
高能量密度富锂锰基正极材料是非常有前景的锂离子电池正极材料,然而差的倍率性能和长循环过程中严重的电压衰减制约其商业化应用.通过少量镧对Li_(1.2)Mn_(0.75)Ni_(0.25)O_2正极材料进行了掺杂改性.电化学测试结果表明,少量的镧掺杂Li_(1.2)[Mn_(0.75)Ni_(0.25)]_(0.99)La_(0.01)O_2材料具体优秀的倍率性能,当电流密度为5 C时,Li_(1.2)[Mn_(0.75)Ni_(0.25)]_(0.99)La_(0.01)O_2电极仍然可提供185.5 mAh g(-1)放电比容量.在0.5 C倍率循环100次后容量保持率为76.5%.此外,循环过程中电压衰减也得到了有效的缓解.电化学性能的改善与镧掺杂后减少的晶格氧释放和扩大的锂层间距密切相关.因此,镧掺杂改性是改善富锂锰基正极材料结构稳定性和电化学性能的一种非常有前途的方法.  相似文献   

19.
通过在CdS纳米棒的表面负载Au和S合成了一种新型的三元S/CdS-Au复合物.在可见光条件下(λ420 nm),S/CdS-Au显示出了优异的光催化产氢活性(4.38 mmol·g~(-1)·h~(-1)),高于CdS-Au (2.56 mmol·g~(-1)·h~(-1))和S/CdS(1.86 mmol·g~(-1)·h~(-1)).光电流和电化学阻抗谱证明,在Au和S的协同作用下,CdS的光生电子得到有效分离并提高了S/CdS-Au的产氢活性. S/CdS-Au是一种高效、稳定用于分解水产氢的复合光催化剂.  相似文献   

20.
目的:合成3D C-Ni3Si2O5(OH)4电极材料,并对此合成材料的物理性质进行探究,通过电化学测试从中选出电化学性能最优的合成方法.方法:以煅烧天然芦苇叶得到的碳源(C-SiO2)结合Ni(CH3COO)2·4H2O,形成层状硅酸镍C-Ni3Si2O5(OH)4纳米颗粒作为电极材料,需要将其按照不同比例进行混合,将其编号为C-NiSi-1-5,并采用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱和电化学测试等方法研究复此合材料的结构、形貌及超级电容性能.结果:测试结果表明,与C-SiO2结合并原位生成的层状硅酸镍具有较高的比表面积、多孔结构和出色的电化学性能.结论:编号为C-NiSi-3的电极材料在0.5 A/g电流密度下比电容为74.7 F/g,C-NiSi-3在10000次循环后具有97% 的出色电容保持率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号