首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
教育   31篇
  2020年   1篇
  2015年   1篇
  2013年   7篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
排序方式: 共有31条查询结果,搜索用时 171 毫秒
1.
2.
One common theme underlying recent reports on science education is that the content of school science and its related pedagogical approaches are not aligned with the interests and needs of both society and the majority of the students. Most students do not find their science classes interesting and motivating. These claims are especially valid regarding those students who, in the future, will probably not embark on a career in science or engineering but will need science and technology personally and functionally as literate citizens. One key problem seems to be that few science programs around the world teach how science is linked to those issues that are relevant to students’ life, environment, and role as a citizen. As a result, many students are unable to participate in societal discussions about science and its related technological applications. This paper discusses the need to incorporate socioscientific ideas into the science curricula more thoroughly. This recommendation is supported by a theoretical rationale from various sources leading to a reflection about common practices in science education in three countries: Israel, Germany, and the USA. The state-of-the-art, potentials, and barriers of effective implementation are discussed.  相似文献   
3.
The implementation of new content and pedagogical standards in science education necessitates intensive, long-term professional development of science teachers. In this paper, we describe the rationale and structure of a comprehensive and intensive professional development program of school-based leaders, namely school chemistry coordinators. The year-long program was designed so that the chemistry teachers who enrolled in the program were able to develop in three interrelated aspects: content knowledge, pedagogical content knowledge, and leadership ability. Several strategies for the development of these aspects were adopted from Loucks-Horsley, Hewson, Love, & Stiles (1998). The evaluation of the program focused on the changes that participating teachers underwent regarding their personal beliefs and their functioning as school chemistry coordinators in their schools.  相似文献   
4.
An inquiry-oriented laboratory in chemistry was integrated into the chemistry curriculum in Jewish high schools in Israel, and after a short period was also implemented in Arab sector. In this study, we investigated the effect of culture on the perceptions of laboratory classroom learning environments by comparing the perceptions of Arab and Jewish high school students who learned the inquiry-oriented chemistry laboratory. The learning environment is influenced by student-teacher relationship and we thought that this relation is an important issue in the inquiry laboratory and is different between the Arab and Jewish populations. However, until recently, the Arab teachers have remained in the centre of the learning process and their students perceived them as the main source of knowledge and information. In this study, we used both quantitative and qualitative methods to determine whether the laboratory learning environment was different in Arab and Jewish classes that learned in the inquiry-oriented laboratory in chemistry. A statistical comparison of Arab and Jewish inquiry groups revealed significant differences in their actual and preferred perceptions. From the qualitative part of the study, we found that the teachers and students from the Arab and Jewish sectors were statistically similar in the categories that we measured during the inquiry phase, but they were statistically different during the pre-inquiry phase of the laboratory. From the interviews with the teachers and the students, we found that there were differences in the student-teacher relationship between the two sectors.  相似文献   
5.
6.
7.
Chemical bonding is one of the key and basic concepts in chemistry. The learning of many of the concepts taught in chemistry, in both secondary schools as well as in the colleges, is dependent upon understanding fundamental ideas related to chemical bonding. Nevertheless, the concept is perceived by teachers, as well as by learners, as difficult, with teaching commonly leading to students developing misconceptions. Many of these misconceptions result from over‐simplified models used in text books, by the use of traditional pedagogy that presents a rather limited and sometimes incorrect picture of the issues related to chemical bonding and by assessments of students' achievement that influence the way the topic is taught. In addition, there are discrepancies between scientists regarding key definitions in the topic and the most appropriate models to teach it. In particular, teaching models that are intended to have transitional epistemological value in introducing abstract ideas are often instead understood by students as accounts of ontological reality. In this review paper we provide science educators, curricula developers and pre‐service and in‐service professional development providers an up‐to‐date picture regarding research and developments in teaching about chemical bonding. We review the external and internal variables that might lead to misconceptions and the problematic issue of using limited teaching/learning models. Finally, we review the approaches to teaching the concept that might overcome some of these misconceptions.  相似文献   
8.
An inquiry-type laboratory has been implemented into the chemistry curriculum in high schools in Israel. In this study, we investigated the idea that generally the science laboratory provides a unique learning environment that differs from the learning environment that exists in classrooms in which other instructional techniques are used. Moreover, the inquiry laboratory provides students with a learning situation in which they are involved in activities that might influence some of the variables that are influencing the learning environment of such laboratories. In this study, the Science Laboratory Environment Inventory (SLEI) was used to assess the students' perceptions of their chemistry laboratory learning environment. Statistical comparison of two groups (control and inquiry) revealed significant differences between the groups regarding their actual perceptions. Moreover, it was found that the differences between the actual and preferred laboratory learning environment were significantly smaller for the inquiry group than for the control group. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号