首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
科学研究   1篇
体育   4篇
  2021年   1篇
  2015年   2篇
  2013年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Abstract

The purpose of the present study was to evaluate dietary intake and body composition of elite rhythmic gymnastics (RG) athletes prior to a competition event. Sixty-seven rhythmic gymnasts (18.7 ± 2.9 years old) of high performance level, with 36.6 ± 7.6 h of training/week were evaluated in order to collect training and competition data, medical and gynaecological history, detailed dietary intake and body composition before an international competition. The majority of the participants (n = 40; 59.7%) had already menstruated, but age of menarche was delayed (15.3 ± 1.3 years) and all revealed menstrual irregularities. Gymnasts' body mass (48.4 ± 4.9 kg) and body mass index (BMI; 17.4 ± 1.1 kg/m2) were below the normal for age, and height (1.66 ± 0.05 m) was normal or even slightly above normal for age. Body fat was 9.0 ± 2.0% with no significant differences between age strata. Gymnasts exhibited low energy availability (EA; 31.5 ± 11.9 kcal/kg fat-free mass (FFM)/day). The average carbohydrate and protein intakes were 5.1 ± 2.3 g/kg/day and 1.6 ± 04 g/kg/day, which correspond to 51.4 ± 7.2% and 16.9 ± 3.4% of total energy intakes, respectively; average fat contribution was 33.0 ± 5.3%. Low intakes of pantothenic acid, folate and vitamins D, E and K and of minerals, including calcium, iron and magnesium were reported. Intakes of thiamine, riboflavin, niacin, vitamins A, B-6, B-12, C and manganese and zinc were above-adequate (P < 0.05). Low EA, low body fat and micronutrient deficiencies are common among RG.  相似文献   
2.
3.
The addition of whey protein to a carbohydrate–electrolyte drink has been shown to enhance post-exercise rehydration when a volume below that recommended for full fluid balance restoration is provided. We investigated if this held true when volumes sufficient to restore fluid balance were consumed and if differences might be explained by changes in plasma albumin content. Sixteen participants lost ~1.9% of their pre-exercise body mass by cycling in the heat and rehydrated with 150% of body mass lost with either a 60 g · L?1 carbohydrate drink (CHO) or a 60 g · L?1 carbohydrate, 20 g · L?1 whey protein isolate drink (CHO-P). Urine and blood samples were collected pre-exercise, post-exercise, post-rehydration and every hour for 4 h post-rehydration. There was no difference between trials for total urine production (CHO 1057 ± 319 mL; CHO-P 970 ± 334 mL; = 0.209), drink retention (CHO 51 ± 12%; CHO-P 55 ± 15%; = 0.195) or net fluid balance (CHO ?393 ± 272 mL; CHO-P ?307 ± 331 mL; = 0.284). Plasma albumin content relative to pre-exercise was increased from 2 to 4 h during CHO-P only. These results demonstrate that the addition of whey protein isolate to a carbohydrate–electrolyte drink neither enhances nor inhibits rehydration. Therefore, where post-exercise protein ingestion might benefit recovery, this can be consumed without effecting rehydration.  相似文献   
4.
Because body mass change (ΔMb) does not represent all water losses and gains, the present field investigation determined if (a) ΔMb equalled the net effective body water change during ultra-endurance exercise and (b) ground speed and exercise duration influenced these variables. Thirty-two male cyclists (age range, 35–52 years) completed a 164-km event in a hot environment, were retrospectively triplet matched and placed into one of three groups based on exercise duration (4.8, 6.3, 9.6 h). Net effective body water loss was computed from measurements (body mass, total fluid intake and urine excreted) and calculations (water evolved and mass loss due to substrate oxidation, solid food mass and sweat loss), including (ΔEBWgly) and excluding (ΔEBW) water bound to glycogen. With all cyclists combined, the mean ΔMb (i.e. loss) was greater than that of ΔEBWgly by 1200 ± 200 g (P = 1.4 × 10–18), was similar to ΔEBW (difference, 0 ± 200 g; P = .21) and was strongly correlated with both (R2 = .98). Analysis of equivalence indicated that ΔMb was not equivalent to ΔEBWgly, but was equivalent to ΔEBW. Due to measurement complexity, we concluded that (a) athletes will not calculate the effective body water calculations routinely and (b) body mass change remains a useful field-expedient estimate of net effective body water change.  相似文献   
5.
Strenuous bouts of prolonged exercise and heavy training are associated with depressed immune cell function. Furthermore, inadequate or inappropriate nutrition can compound the negative influence of heavy exertion on immunocompetence. Dietary deficiencies of protein and specific micronutrients have long been associated with immune dysfunction. An adequate intake of iron, zinc and vitamins A, E, B6 and B12 is particularly important for the maintenance of immune function, but excess intakes of some micronutrients can also impair immune function and have other adverse effects on health. Immune system depression has also been associated with an excess intake of fat. To maintain immune function, athletes should eat a well-balanced diet sufficient to meet their energy requirements. An athlete exercising in a carbohydrate-depleted state experiences larger increases in circulating stress hormones and a greater perturbation of several immune function indices. Conversely, consuming 30–60?g carbohydrate?·?h?1 during sustained intensive exercise attenuates rises in stress hormones such as cortisol and appears to limit the degree of exercise-induced immune depression. Convincing evidence that so-called ‘immune-boosting’ supplements, including high doses of antioxidant vitamins, glutamine, zinc, probiotics and Echinacea, prevent exercise-induced immune impairment is currently lacking.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号