首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A computational fluid dynamics model for wind simulation: model implementation and experimental validation
Authors:Email author" target="_blank">Zhuo-dong?ZhangEmail author  Ralf?Wieland  Matthias?Reiche  Roger?Funk  Carsten?Hoffmann  Yong?Li  Michael?Sommer
Institution:1.Institute of Soil Landscape Research,Leibniz-Centre for Agricultural Landscape Research (ZALF),Muencheberg,Germany;2.Institute of Landscape System Analysis,Leibniz-Centre for Agricultural Landscape Research (ZALF),Muencheberg,Germany;3.Institute of Agricultural Environment and Sustainable Development,Chinese Academy of Agricultural Sciences (CAAS),Beijing,China;4.Institute of Earth and Environmental Science,University of Potsdam,Potsdam,Germany
Abstract:To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed in C language based on the Navier-Stokes equations, and it is freely available as open source. Integrated with the spatial analysis and modelling tool (SAMT), the wind model has convenient input preparation and powerful output visualization. To validate the wind model, a series of experiments was conducted in a wind tunnel. A blocking inflow experiment was designed to test the performance of the model on simulation of basic fluid processes. A round obstacle experiment was designed to check if the model could simulate the influences of the obstacle on wind field. Results show that measured and simulated wind fields have high correlations, and the wind model can simulate both the basic processes of the wind and the influences of the obstacle on the wind field. These results show the high reliability of the wind model. A digital elevation model (DEM) of an area (3800 m long and 1700 m wide) in the Xilingele grassland in Inner Mongolia (autonomous region, China) was applied to the model, and a 3D wind field has been successfully generated. The clear implementation of the model and the adequate validation by wind tunnel experiments laid a solid foundation for the prediction and assessment of wind erosion at regional scale.
Keywords:
本文献已被 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号