摘 要: | 应用整体思想解数学问题,就是从全局着眼,由整体入手,把一些彼此独立但实质上紧密相联的量作为整体考虑的思想方法。现列举一些实例,谈谈运用这种思想方法解数列题的若干思考角度。 1 整体代入 例1 在等差数列{a_n}|中,已知S_p=S_q(p≠q),求S_(p q) 分析1 设数列{a_n}的公差为d,S_(p q)=(p q)a_1 1/2(p q)(p q-1)d=(p q)/2[2a_1 (p q-1)d].仅由条件S_p=S_q,求不出a_1、d,整体考虑求2a_1 (p q-1)d.∵S_p=S_q,∴pa_1 1/2p(p-1)d=qa_1 1/2q(q-1)d,即 (p-q)a_1 1/2(p-q)(p q-1)d=0, ∵p≠q,∴2a_1 (p q-1)d=0。 ∴S_(p q)=p q/2[2a_1 (p q-1)d]=0. 分析2 依题设此等差数列不是常数列,则前n项和S_n是关于n的常数项为0的二次函数,设S_n=an~2 bn,则 S_p=ap~2 bp,S_q=aq~2 bq,
|