摘 要: | 二面角是高中立体几何的一个重点,也是一个难点.如何把二面角化归为平面角,或借助立体几何的某些公式直接求出,学生往往束手无策,本文介绍二面角的几种求法,为学生解题提供几个着眼点. 1 定义法 例1 经S引三条 等长但不共面的线段 SA,SB,SC,且ASB 60ASC==?BSC 90=?求二面角ABCS--的大小. 分析 由题设条件可知ABAC=.取BC中点O,连,AOSO则有,AOBCSOBC^^,所以AOS为二面角ABCS--的平面角.引入长度参数SAa=,由余弦定理或勾股定理可得90AOS=? 2 三垂线定理法 例2 如图,设E、F、 G为正方体1AC中相应 棱的中点,求截面EFG与 …
|