巧用托勒密定理求值域例说 |
| |
作者姓名: | 赵峰 |
| |
作者单位: | 安徽灵壁中学!234200 |
| |
摘 要: | 托勒密定理是几何中的著名定理.本文通过托勒密定理揭示—类函数的特殊性质,从而给出其值域的一种巧妙的求法.函数f(x)=aA(x) bB(x),(a≥b≥0,A(x)≥0,B(x)≥0)的定义域.为D,A~2(x) B~2(x)=d~2,(d>0为定值),那么,以AC=d为直径作圆O,如图,令AB=A(x),BC=B(x),CD=a/(a~2 b~2)~(1/2)·d=kd,DA=b/(a~2 b~2)~(1/2)·d=hd.则四边形ABCD内接于圆O,且f(x)=(a~2 b~2)~(1/2)·(AB·CD BC·DA)/d
|
本文献已被 CNKI 等数据库收录! |
|