首页 | 本学科首页   官方微博 | 高级检索  
     


A modified incremental shuttle run test for the determination of peak shuttle running speed and the prediction of maximal oxygen uptake
Authors:DAVID M. WILKINSON  JOANNE L. FALLOWFIELD  STEPHEN D. MYERS
Abstract:
The aim of this study was to determine the incidence of subject drop-out on a multi-stage shuttle run test and a modified incremental shuttle run test in which speed was increased by 0.014m.s-1 every 20-m shuttle to avoid the need for verbal speed cues. Analysis of the multi-stage shuttle run test with 208 elite female netball players and 381 elite male lacrosse players found that 13 (+/-3) players stopped after the first shuttle of each new level, in comparison with 5 (+/-2) players on any other shuttle. No obvious drop-out pattern was observed on the incremental shuttle run test with 273 male and 79 female undergraduate students. The mean difference between a test-retest condition (n= 20) for peak shuttle running speed (-0.03+/- 0.01m.s-1) and maximal heart rate (0.4+/- 0.1 beats.min-1) on the incremental test showed no bias (P > 0.05). The 95% absolute confidence limits of agreement were 0.11m.s-1 for peak shuttle running speed and +/-5 beats.min-1 for maximal heart rate. The relationship (n= 27) between peak shuttle running speed on the incremental shuttle run test (4.22+/- 0.14m.s-1) and VO2max (59.0+/- 1.7ml.kg-1.min-1) was r=0.91 (P< 0.01), with a standard error of prediction of 2.6ml.kg-1.min-1. These results suggest verbal cues during the multi-stage shuttle run test may influence subject drop-out. The incremental shuttle run test shows no obvious drop-out patten and provides a valid estimate of VO2max.
Keywords:Maximal Oxygen Uptake  Peak Running Speed  Shuttle Run
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号