首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
合成了2,3-丁二酮双缩苯甲酰肼合锌(Ⅱ)金属配合物,并以其为中性载体制备了阴离子选择性电极.该电极对水杨酸根(Sal-)具有优良的电位响应性能和选择性,并呈现反Hofmeister选择性行为,其选择性为:Sal-> ClO4-> SCN->I->NO3-> NO2-> Br-> F->Cl-> SO24-.在pH为4.0的磷酸盐缓冲体系中,电极电位呈现近能斯特响应,线性响应范围为2.5×10-5 ~1.0×10-1 mol/L,斜率为- 54.5 mV/decade,检测下限为1.0×10-5mol/L.采用交流阻抗技术研究了电极的响应机理,结果表明载体本身的结构与电极的响应性能间有非常密切的关系.电极用于药品分析,其结果令人满意.  相似文献   

2.
研究了基于 2, 4-二羟基苯甲醛缩硫脲合镍(Ⅱ)为载体的溶剂聚合膜阴离子敏感电极,该电极对高氯酸根离子的电位响应具有优良的选择性和灵敏度.在 pH=5.0的缓冲溶液中,电极电位呈近能斯特响应,线性响应范围为 3× 10- 6- 10- 1mol/L ,斜率为- 52.8mV/dec ,检测下限为 6× 10- 7mol/L ,该电极响应时间短,且具有良好的稳定性和重现性.  相似文献   

3.
以乙酰丙酮邻氨基苯甲酸合镍(Ⅱ)〔Ni(II)-L〕金属配合物为中性载体的水杨酸根离子选择性电极,对水杨酸根(Sal-)具有优良的电位响应性能和选择性,并呈现反Hofmeister选择性行为,其选择性为:Sal->ClO4->SCN->I->NO3->NO2->Br->Cl->SO42-.线性响应范围为:8.5×10-6~1.0×10-1mol/L,斜率为-54.1mV/decade,检测下限为4.25×10-6mol/L.采用紫外可见光谱技术研究了电极的响应机理,结果表明载体本身的结构与电极的响应性能间有非常密切的关系.电极用于药品分析,其结果令人满意  相似文献   

4.
研究了以N,N-双[(1-苯基-3-甲基-5-氧-4-吡唑啉基)α-呋喃次甲基]邻苯二亚胺铜(Ⅱ)[Cu (Ⅱ)-(PMαFP)2Pen]配合物为载体的PVC膜电极.该电极对硫氰酸根离子(SCN-)呈现出反Hofmeister选择性行为,其选择性次序为:SCN->ClO-4>I->Sal->Br->NO3->Cl->NO2->SO2-3>SO24->H2PO4-.该电极在pH 6.0的磷酸盐缓冲体系中具有最佳的电位响应,在1.0×10-1~5.0×10-6mol/L SCN-浓度范围呈近能斯特响应,斜率为57.5 mV/pSCN-(2S℃),检测下限为3.0×10-6mol/L.将电极用于实验室废水分析,所得结果与HPLC法一致.  相似文献   

5.
研究了基于2,4-二羟基苯甲醛缩硫脲合镍(II)为载体的溶剂聚合膜阴离子敏感电极,该电极对高氯酸根离子(C1O-4)的电位响应具有优良的选择性和灵敏度。在pH=5.0的缓冲溶液中,电极电位呈近能斯特响应,线性响应范围为3×10-6—10-1mol/L,斜率为-52.8mV/dec,检测下限为6×10-7mol/L,该电极响应时间短,且具有良好的稳定性和重现性。  相似文献   

6.
本文研究了基于2,3-丁二酮双缩氨基硫脲合锌(II)[Zn(II)-BUSE]中性载体的PVC膜电极。该电极对水杨酸根离子(Sal-)具有良好的电位响应特性,且呈现反Hofmeister选择性行为,其选择性序列从大到小为:Sal^-〉SCN^-〉ClO4^-〉I^-〉NO2^-〉NO3^-〉Cl^-〉SO42-〉SO3^2-。在pH=4.0的磷酸盐缓冲体系中该电极具有最佳的电位响应,在0.1-8.0×10^-7 mol/L浓度范围内呈近能斯特响应,斜率为-57.6 mV/decade(25℃),检测下限为5.0×10^-7 mol/L。采用交流阻抗技术研究了电极的响应机理,并将电极用于药品分析,结果比较满意。  相似文献   

7.
通过对以2,6一二甲酰基 4-甲基苯酚缩谷氨酸合二铜(Ⅱ)配合物Cu(Ⅱ)-DFMPG为中性载体的水杨酸根离子选择性电极的研究,发现该电极对水杨酸根(sal-)具有优良的电位响应性能和选择性,并呈现出反Hofmeister选择性行为.其选择性次序为sal->SCN>ClO4->I->NO2->NO3->Br->Cl->SO32-.在pH 5.0的磷酸盐缓冲体系中,电极电位呈现近能斯特响应,线性响应范围为4.2×10-5-1.0×10-1mol/L,斜率为-53.2 mV/dec(25°C),检测下限为2.0×10-5 mol/L.将该电极用于阿司匹林含量测定,与经典分析法相比,结果令人满意.  相似文献   

8.
研究了以不对称希夫碱2,2'-双(吡咯-2-甲醛-邻苯二胺)-(4,4'-亚甲基-双水杨醛)金属Cu(II)、Hg(II)、Co(II)配合物为中性载体的电位型阴离子选择性电极。结果表明,该希夫碱的Hg(II)配合物作为载体的电极对I-具有良好的电位响应特性,并呈现反Hofmeister行为,其选择性序列为:I->Sal->SCN->IO4->ClO-4>NO-2>Br->NO-3>Cl->SO2-4。在pH2.5的磷酸盐缓冲体系中该电极具有最佳电位响应,在(1.0×10-13.7×10-7)mol/L浓度范围内对I-呈近能斯特响应,斜率为(-58.2±1.1)mV/pI-(20℃),检测限为0.21μmol/L。用离子添加剂、交流阻抗技术、紫外可见光谱技术初步研究了阴离子与载体的作用机理,并将电极用于实际水样分析,结果满意。  相似文献   

9.
本文研究了基于水杨醛缩丙醇胺Schiff碱(Ⅱ)锰金属配合物[Mn(Ⅱ)-SaPa]为中性载体的阴离子选择性电极。该电极对水杨酸根(Sal~-)具有优良的电位响应性能,并呈现出反Hofmeister选择性行为,其选择性次序为I~-<SO_3~(2-)<SO_4~(2-)<PO_4~(3-)<NO_3~-<A_C~-<SCN~-<NO_2~-<CIO_4~-<Sal~-。在pH5.0的磷酸盐缓冲体系中,电极电位呈现近能斯特响应,线形响应范围为5.0×10~(-5)-1.0×10~(-1)mol/L,斜率为-56.8mV/dec(20℃),检测下限为2.0×10~(-5)mol/L。采用交流阻抗技术和紫外可见光谱技术研究了电极的响应机理,结果表明配合物中心金属原子的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系。并将电极用于药品分析,其结果令人满意。  相似文献   

10.
用La2(SO4)3、IBA分别处理桂花插条对生根有促进作用.La2(SO4)3使根的长度明显增加,根的鲜重、干重显著提高,其中以1×10-4mol/L浓度处理效果最好,其次为1×10-5mol/L浓度的处理.IBA(1×10-5mol/L)则明显扩大了生根范围和增加了插条生根数.La2(SO4)3与IBA混合使用对插条根鲜重和干重的促进有加合效应,而在生根范围、生根数、根长度方面则表现为协同效应.  相似文献   

11.
利用桑色素在经预阳极化处理的铂电极上的催化氧化和不可逆电对的双安培检测原理,建立流动注射双安培法直接检测桑色素的电化学新方法。使用经过恒电位预阳极化处理的双铂电极,在外加电位差为0V时,通过偶合桑色素在一支电极上的氧化和氧化铂在另一支电极上的还原两个不可逆电极过程,构成流动注射双安培检测体系。结果在0.1mol/L的NH3·H2O—NH4Cl(pH=11.0)缓冲液中,测得桑色素的氧化电流与其浓度在4.0×10-6~1.0×10-3mol/L范围内呈线性关系(r= 0.9991 ,n=14)。检出限为1.0×10-6mol/L。连续35次测定2.0×10-5mol/L桑色素,电流值RSD=1.7 %。  相似文献   

12.
利用铅离子选择性电极研究了测定铅的条件,并测定了该电极的性能参数。在1.0×10-7~1.0×10-4mol/L范围内铅的浓度的对数与电位呈线性关系,检出限为8.0×10-8mol/L。并用该法测定了水中铅的含量,平均加标回收率为93.3%。  相似文献   

13.
极谱催化波法测定槲皮素   总被引:1,自引:0,他引:1  
利用K2S2O8存在下槲皮素于-1.38V(vs.SCE)产生的极谱催化波,拟定了测定槲皮素的新方法。在0.02mol/L酒石酸-酒石酸钠(pH2.7)-1.0×10-2mol/LK2S2O8底液中,槲皮素催化波的峰电位为-1.38V(vs.SCE),其二阶导数峰电流与槲皮素浓度在1.0×10-7~2.0×10-6mol/L范围内呈线性关系(r=0.9984,n=6)。4.0×10-7mol/L槲皮素催化波的峰电流约为相应还原波峰电流的50倍。应用本方法直接测定良姜中的槲皮素,结果令人满意。  相似文献   

14.
:利用循环伏安法研究了肾上腺素在 0 .5mol LH2 SO4 溶液中铂电极上的电化学氧化反应 .结果表明 :在 0 .5mol LH2 SO4 溶液中铂电极上 ,肾上腺素的电氧化反应具有准可逆电荷跃迁的特征 ,其动力学参数 ,扩散系数 (DR)为 2 .75× 10 - 6 cm2 s ,异相电子转移速率常数 (ks)为 2 .2 7× 10 - 4cm s.  相似文献   

15.
该文首次研究以三苯基2-吡啶乙酸脂为中性载体,制备了一种呈现出反Hofmeister选择性行为的PVC膜电极,其对硫氰酸根离子(SCN-)具有优良的电位响应特性,该电极在pH 5.0的磷酸盐缓冲体系中具有最佳的电位响应,在1.0×10-1-5.0×10-5moVL SCN-浓度范围呈近能斯特响应,斜率为52.7 mY/dec(25℃),检测下限为2.0×10-5mol/L.采用交流阻抗和光谱分析技术初步研究了载体与SCN-之间的作用关系.  相似文献   

16.
文章介绍了电化学聚合1.10-菲络啉合钴(Ⅱ)化学修饰电极的制备,并对NO的响应范围及机理作了初步的研究.实验发现,用电化学方法聚合制备的该电极涂加Nation后对NO的检测有高的灵敏度和好的选择性.NO的浓度在4.2×10^-5~2.4×10^-7mol/L范围内氧化电流与浓度呈线性关系,其线性相关系数为0.996,检测限达4.8×10^-8mol/L;  相似文献   

17.
以毛细管悬汞电极为检测电极,设计制作了毛细管电泳-电化学检测系统.分析了谷胱甘肽在Hg电极上的电化学氧化,确定了谷胱甘肽的毛细管电泳-电化学检测的条件.谷光甘肽检测的线性浓度范围为1.0×10-7-8×10-5mol/L,检测限为1.5×10-8mol/L.  相似文献   

18.
本文合成了双硫腙-Hg(Ⅱ)金属载体化合物,考察了该载体对阴离子的电位响应情况,其选择性次序为:I~->ClO_4~->SCN~->Br~->Sal~->NO_3~->NO_2~->IO_3~->HCO_3~->Cl~->HPO_4~(2-),具有明显的反Hofmeister行为。以双硫腙-Hg(Ⅱ)为载体,膜组成:双硫腙-Hg(Ⅱ):PVC:邻硝基苯基辛醚为 0.15:30:70。在30℃,0.05mol·dm~(-3)Na_2HPO_4 -0.05mol·dm~(-3)NaH_2PO_4 介质中,电极在 5×10~(-4)-10~(-6)mol·dm~(-3)碘离子浓度范围呈线性响应,斜率为 53±2mV/dec。检测下限为 6×10~(-7)mol·dm~(-3)。在 10~(-6)mol·dm~(-3)以上,响应时间 3至 5分钟,10~(-6)mol·dm~(-3)以下,响应时间在 8分钟左右,在碘离子浓度为 5×10~(-5)至5×10~(-6)mol·dm~(-3)溶液中交替测定 10次,电位标准差少于1mV,电极用于食盐中碘的测定,结果令人满意。  相似文献   

19.
亚铁氰化钾修饰碳黑微电极测定抗坏血酸   总被引:1,自引:0,他引:1  
研究了抗坏血酸(AA)在亚铁氰化钾修饰碳黑微电极上的电化学行为。实验结果表明,在pH7.0的磷酸盐中,AA在该电极上的线性范围为2.0×10-6-4.0×10-3mol/L;检出限(3σ)为1.0×10-6mol/L。用这种电极测定抗坏血酸的含量,结果满意。  相似文献   

20.
采用化学聚合的方法(循环伏安法)制备聚苯胺掺杂乙醇胺的修饰电极,并研究了该修饰电极的电化学性质和在抗坏血酸等物质存在下测定人体尿酸的电化学分析方法.研究发现该修饰电极在0.02 mol/L磷酸盐缓冲液(pH=5.86)介质中,聚苯胺掺杂乙醇胺的玻碳修饰电极对尿酸具有明显的电化学响应.在2.5×l0-6~1.0×10-5mol/L内,尿酸浓度C与峰电流Ip成线性关系,相关系数r=0.9932.利用该法直接测定人体尿样中尿酸的含量,测定结果的相对标准偏差为3.63%,回收率为98.7%~100.77%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号