首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The phrase “the two cultures debate” has a particular connotation in the British context. It was prompted by a lecture given in the 1950s by the novelist C.P. Snow. Snow’s first career had been in science, and he drew on his inside knowledge of that domain in a sequence of novels, known collectively as Strangers and Brothers, where he contrasted it with that of the arts and humanities. Attempts have been made to revive the two cultures debate on the grounds that it speaks freshly to the problems we currently face and helps to account for the repression of the humanities. My discussion will align the two cultures debate with other perhaps similar constructions of internal cultural conflict, including some reference to Korean Confucianism and Sirhak (sometimes described as pragmatism). It will, however, take issue with recent attempts to revive Snow’s categories, suggesting that this is a misidentification of the nature of the contemporary threat to the humanities. It will try to show where that threat comes from and how, through education, it might be resisted. This will involve reappraising the importance of works of art in understanding the place of technology in the development of the human. Education in the humanities requires no less.  相似文献   

2.
This article presents the findings of an international collaborative investigation into preservice teachers’ views on the nature of scientific knowledge development with respect to six elements: observations and inferences, tentativeness, scientific theories and laws, social and cultural embeddedness, creativity and imagination, and scientific methods. A total of 640 preservice teachers, 209 from the United States, 212 from China, and 219 from Turkey, participated in the study. The survey “Student Understanding of Science and Scientific Inquiry (SUSSI)”, having a blend of Likert-type items and related open-ended questions, was used to gain a fuller understanding of the preservice teachers’ views of the nature of scientific knowledge development. Across the three countries, the participants demonstrated better understanding of the tentative NOS aspect but less understanding of the nature of and relationship between scientific theories and scientific laws. The Chinese sample scored highest on five of the six Likert sub-scales, the USA sample demonstrated more informed views on observation and inference, and the Turkish preservice teachers possessed relatively more traditional views in all six NOS aspects. Conclusions and limitations of the present study as well as implications and recommendations for future studies, are also discussed.  相似文献   

3.
Science educators have the common goal of helping students develop scientific literacy, including understanding of the nature of science (NOS). University faculties are challenged with the need to develop informed NOS views in several major student subpopulations, including science majors and nonscience majors. Research into NOS views of undergraduates, particularly science majors, has been limited. In this study, NOS views of undergraduates in introductory environmental science and upper-level animal behavior courses were measured using Likert items and open-ended prompts. Analysis revealed similarities in students'' views between the two courses; both populations held a mix of naïve, transitional, and moderately informed views. Comparison of pre- and postcourse mean scores revealed significant changes in NOS views only in select aspects of NOS. Student scores on sections addressing six aspects of NOS were significantly different in most cases, showing notably uninformed views of the distinctions between scientific theories and laws. Evidence-based insight into student NOS views can aid in reforming undergraduate science courses and will add to faculty and researcher understanding of the impressions of science held by undergraduates, helping educators improve scientific literacy in future scientists and diverse college graduates.  相似文献   

4.
ABSTRACT

Graduate students regularly teach undergraduate STEM courses and can positively impact students’ understanding of science. Yet little research examines graduate students’ knowledge about nature of science (NOS) or instructional strategies for teaching graduate students about NOS. This exploratory study sought to understand how a 1-credit Teaching in Higher Education course that utilised an explicit, reflective, and mixed-context approach to NOS instruction impacted STEM graduate students’ NOS conceptions and teaching intentions. Participants included 13 graduate students. Data sources included the Views of Nature of Science (VNOS-Form C) questionnaire administered pre- and post-instruction, semi-structured interviews with a subset of participants, and a NOS-related course project. Prior to instruction participants held many alternative NOS conceptions. Post-instruction, participants’ NOS conceptions improved substantially, particularly in their understandings of theories and laws and the tentative nature of scientific knowledge. All 12 participants planning to teach NOS intended to use explicit instructional approaches. A majority of participants also integrated novel ideas to their intended NOS instruction. These results suggest that a teaching methods course for graduate students with embedded NOS instruction can address alternative NOS conceptions and facilitate intended use of effective NOS instruction. Future research understanding graduate students' NOS understandings and actual NOS instruction is warranted.  相似文献   

5.
The nature of science (NOS) has become a central goal of science education in many countries. This study sought an understanding of the extent to which a nature of science course (NOSC), designed according to the conceptualization of pedagogical content knowledge (PCK) for teaching nature of science (NOS), affects in-service science teachers’ understanding and learning of NOS, and their orientations towards teaching it. A qualitative research approach was employed as a research methodology, drawing upon pre- and post-instruction NOS questionnaires, field notes, and in-service teachers’ weekly journal entries and assignments. Open-ended NOS questionnaires, used to assess participants’ understandings of NOS, were analysed and categorized as either informed, partially informed and naive. Other qualitative data were analysed through an inductive process to identify ways in-service teachers engaged and learned in the NOSC. The results indicate that at the beginning of the course, a majority of the in-service science teachers held naive understandings of NOS, particularly with respect to the definition of science, scientific inquiry, and differences between laws and theories. They viewed implicit project-based science and science process skills as goals of NOS instruction. By engaging in the course, the in-service science teachers developed an understanding of NOS and orientations to teaching NOS based on various elements, especially reflective and explicit instruction, role modelling, and content- and non-content embedded instruction. The aim of this study is to help science teacher educators, consider how to support and develop science teachers’ understandings of NOS while being mindful of PCK for NOS, and develop methods for teaching NOS frameworks.  相似文献   

6.
The debate about the proper relationship between the sciences and the humanities as formulated by C.P. Snow in his influential lecture, “The Two Cultures and the Scientific Revolution” and as rebutted by F.R. Leavis in a lecture entitled, “The Significance of Lord Snow” still goes on today. Its frames of reference, however, should be broadened from concentration on the lack of communication routes between the two cultures in question so as to deal with the problem of the lack of communication within given cultures and the rise of overlapping cultures such as that of social scientists. The debate, so far as universities are concerned, should be not so much one of science versus humanities but one of general versus specialized education with increased importance being given to the role and scope of continuing education. The university should be one place in society in which cultures communicate and converge and problems are solved critically and imaginatively so that graduates may emerge truly educated.  相似文献   

7.
This forum article contributes to the understanding of how science teachers’ identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on ‘reform-minded’ science teachers. The starting point is the paper Science education reform in Confucian learning cultures: teachers’ perspectives on policy and practice in Taiwan by Ying-Syuan Huang and Anila Asghar. It highlights several factors that can explain the difficulties of implementing “new pedagogy” in science education. One important factor is Confucian values and traditions, which seem to both hinder and support the science teachers’ implementation of inquiry-based and learner-centered approaches. In this article Confucianism is compared with other learning cultures and also discussed in relation to different worldviews and educational philosophies in science education. Just like for the central/north European educational tradition called Bildung, there are various interpretations of Confucianism. However, both have subcultures (e.g. reflexive Bildung and Neo-Confucianism) with similarities that are highlighted in this article. If an “old pedagogy” in science education is related to essentialism, rationalist-objectivist focus, and a hierarchical configuration, the so called “new pedagogy” is often related to progressivism, modernism, utilitarianism, and a professional configuration. Reflexive Bildung problematizes the values associated with such a “new pedagogy” and can be described with labels such as post-positivism, reconstructionism and problematizing/critical configurations. Different educational approaches in science education, and corresponding eco-identities, are commented on in relation to transformation of educational practice.  相似文献   

8.
While teachers and practitioners are increasingly expected to conduct research on their own practice, there is a lot of educational research that is not directly involved in practice. This often leads to unilateral research perspectives on educational practice. Therefore, this article calls for an alternative model of researching educational practice, summarised through the term ‘pedagogical science’. We argue that practical and normative theories that seek to improve educational practice should be combined with theories that aim to describe and explain. It is further argued that the combination of such perspectives and theories, a so-called stereoscopic point of view, can allow for a thorough and holistic investigation of educational practice. As part of this argumentation, the article addresses critical questions of various theoretical models of educational research, models that are being used in Scandinavian, European and Anglo-American research on educational practice. With reference to interdisciplinary models of educational research, such as educational sciences, learning sciences and Bildungswissenschaften, there are trends in which pedagogy is marginalised. Thus, the second argument of the article calls for placing pedagogy at the centre of knowledge production in a broad sense, after which pedagogy is made into a source of knowledge for pedagogical science, which sets forth to test and provide empirical support for pedagogy-based knowledge.  相似文献   

9.
大学与人文教育   总被引:7,自引:0,他引:7  
科学和人是人类理性不可或缺的两个方面,但在近代以来的发展中,科学理性渐有凌驾和排斥人理性的趋向,这在大学教育的演变中有鲜明的体现。人教育不仅是人学科的知识教育,更是人精神的教育。人学科的知识教育在大学教育中地位的变化,有其历史的根由,而人精神教育的缺失,则是大学理念残缺的一种症候。在继续推行专业教育的同时,吸取博雅教育的理念及相关理论,有助于弥合科学和人在教育中的疏离倾向,校正大学的理念和方向。  相似文献   

10.
This special issue of Science & Education deals with the theme of ‘Science, Worldviews and Education’. The theme is of particular importance at the present time as many national and provincial education authorities are requiring that students learn about the Nature of Science (NOS) as well as learning science content knowledge and process skills. NOS topics are being written into national and provincial curricula. Such NOS matters give rise to questions about science and worldviews: What is a worldview? Does science have a worldview? Are there specific ontological, epistemological and ethical prerequisites for the conduct of science? Does science lack a worldview but nevertheless have implications for worldviews? How can scientific worldviews be reconciled with seemingly discordant religious and cultural worldviews? In addition to this major curricular impetus for refining understanding of science and worldviews, there are also pressing cultural and social forces that give prominence to questions about science, worldviews and education. There is something of an avalanche of popular literature on the subject that teachers and students are variously engaged by. Additionally the modernisation and science-based industrialisation of huge non-Western populations whose traditional religions and beliefs are different from those that have been associated with orthodox science, make very pressing the questions of whether, and how, science is committed to particular worldviews. Hugh Gauch Jr. provides a long and extensive lead essay in the volume, and 12 philosophers, educators, scientists and theologians having read his paper, then engage with the theme. Hopefully the special issue will contribute to a more informed understanding of the relationship between science, worldviews and education, and provide assistance to teachers who are routinely engaged with the subject.  相似文献   

11.
In this article, the argument is put forth that controversies about the scope and limits of science should be considered in Nature of Science (NOS) teaching. Reference disciplines for teaching NOS are disciplines, which reflect upon science, like philosophy of science, history of science, and sociology of science. The culture of these disciplines is characterized by controversy rather than unified textbook knowledge. There is common agreement among educators of the arts and humanities that controversies in the reference disciplines should be represented in education. To teach NOS means to adopt a reflexive perspective on science. Therefore, we suggest that controversies within and between the reference disciplines are relevant for NOS teaching and not only the NOS but about NOS should be taught, too. We address the objections that teaching about NOS is irrelevant for real life and too demanding for students. First, we argue that science-reflexive meta-discourses are relevant for students as future citizens because the discourses occur publicly in the context of sociopolitical disputes. Second, we argue that it is in fact necessary to reduce the complexity of the above-mentioned discourses and that this is indeed possible, as it has been done with other reflexive elements in science education. In analogy to the German construct Bewertungskompetenz (which means the competency to make informed ethical decisions in scientific contexts), we suggest epistemic competency as a goal for NOS teaching. In order to do so, science-reflexive controversies must be simplified and attitudes toward science must be considered. Discourse on the scientific status of potential pseudoscience may serve as an authentic and relevant context for teaching the controversial nature of reflexion on science.  相似文献   

12.
This study evaluated the representations of nature of science (NOS) in U.S. state science standards, and examined the changes in these representations from documents advanced in the 1980s through 2016. Drawing from the consensus perspective on NOS and prior studies focusing on the analysis of textual content, documents were inspected for 10 target NOS aspects: the empirical, tentative, inferential, creative, theory-driven, and social NOS, in addition to the myth of “The Scientific Method,” the nature of scientific theories and laws, and the social and cultural embeddedness of science. Ninety-eight state documents from 48 states were analyzed and multiple editions were collected from 34 states. Additionally, relevant materials from the Next Generation Science Standards (NGSS) were assessed for their coverage of the same NOS aspects. Collected materials were scored as whole documents, including over 11,000 pages of text in total, on each target aspect, which reflected the treatment (naïve vs. informed) of NOS in text and the manner of presentation (explicit vs. implicit). Overall, surprisingly, state standards documents have improved very little with respect to their NOS coverage over the last 30 years. NOS standards documents remain silent on a majority of key aspects of NOS, and the number of aspects showing explicit, informed representations has held constant. The NGSS performed well compared to many contemporary documents, but they failed to address all target NOS aspects in a desirable manner. Further analysis raised concerns with the degree that states fully adopt and disseminate standards in manner consistent with the NGSS despite stated intentions, which may negatively impact NOS coverage in instructional resources and classroom enactments. To improve NOS representations in standards, recognizing the role these documents play in shaping instructional materials and teaching in the science classroom, exemplars from analyzed materials were highlighted with informed and explicit representations of multiple aspects.  相似文献   

13.
Teaching about the nature of science (NOS) is seen as a priority for science education in many national contexts. The present paper focuses on one central issue in learning about NOS: understanding the nature and status of scientific theories. A key challenge in teaching about NOS is to persuade students that scientific knowledge is generally robust and reliable, yet also in principle always open to challenge and modification. Theories play a central role, as they are a form of conjectural knowledge that over time may be abandoned, replaced, modified, yet sometimes become well established as current best scientific understanding. The present paper reports on findings from interviews with 13–14 year olds in England where target knowledge presents theories as ‘consistent, comprehensive, coherent and extensively evidenced explanations of aspects of the natural world’. Student thinking reflected a two-tier typology of scientific knowledge in which largely unsupported imaginative ideas (‘theories’) became transformed into fairly definitive knowledge (such as laws) through relatively straightforward testing. These results are considered in relation to research into intellectual development which indicates that effective teaching in this area requires careful scaffolding of student learning, but has potential to contribute to supporting intellectual development across the curriculum.  相似文献   

14.
Over the last two decades, science educators and science education researchers have grown increasingly interested in utilising insights from the sociology of scientific knowledge (SSK) to inform their work and research. To date, researchers in science education have focused on two applications: results of sociological studies of science have been used to define new areas of content, generally referred to as Nature of Science (NOS). This has included research into students’ understanding of the NOS, teachers’ understanding of the NOS, and inclusion (or exclusion) of NOS themes in curricula. A second vein of inquiry has been investigations that consider the classroom as a microcosm of scientific discourse and inquiry. Such research has included investigations of student‐to‐student and student‐to‐teacher interactions. In this paper, we present a third application for educational research – the investigation of teacher knowledge and practice as sociological phenomena. In addition to supporting scholarly research, we believe it can be a useful tool for illuminating the complexities of teaching that needs to be taken into account by policy makers and practitioners. In this paper, we provide a thematic review of concepts from the sociology of scientific knowledge, and their application to a case of teacher work.  相似文献   

15.
16.
Teaching Scientific Practices: Meeting the Challenge of Change   总被引:1,自引:0,他引:1  
This paper provides a rationale for the changes advocated by the Framework for K-12 Science Education and the Next Generation Science Standards. It provides an argument for why the model embedded in the Next Generation Science Standards is seen as an improvement. The Case made here is that the underlying model that the new Framework presents of science better represents contemporary understanding of nature of science as a social and cultural practice. Second, it argues that the adopting a framework of practices will enable better communication of meaning amongst professional science educators. This, in turn, will enable practice in the classroom to improve. Finally, the implications for teacher education are explored.  相似文献   

17.
This paper provides a detailed analysis of the inclusion of aspects of nature of science (NOS) in the Next Generation Science Standards (NGSS). In this new standards document, NOS elements in eight categories are discussed in Appendix H along with illustrative statements (called exemplars). Many, but not all, of these exemplars are linked to the standards by their association with either the “practices of science” or “crosscutting concepts,” but curiously not with the recommendations for science content. The study investigated all aspects of NOS in NGSS including the accuracy and inclusion of the supporting exemplar statements and the relationship of NOS in NGSS to other aspects of NOS to support teaching and learning science. We found that while 92 % of these exemplars are acceptable, only 78 % of those written actually appear with the standards. “Science as a way of knowing” is a recommended NOS category in NGSS but is not included with the standards. Also, several other NOS elements fail to be included at all grade levels thus limiting their impact. Finally, NGSS fails to include or insufficiently emphasize several frequently recommended NOS elements such as creativity and subjectivity. The paper concludes with a list of concerns and solutions to the challenges of NOS in NGSS.  相似文献   

18.
19.
Instruments measuring understanding of the nature of science (NOS) are required if educational institutions intend to use benchmarks or examine the effects of interventions targeting students’ NOS development. Compared to other constructs, NOS understanding is complex, having been the subject of debate among scholars in both its substance and its dimensionality. This complexity invites challenges in defining what is to be measured. Drawing from the perspective that policy reform documents provide pragmatic consensus-based definitions of NOS, this study investigated how well the dimensionality described in the NOS component of the Next Generation Science Standards (NGSS) framework matched the empirical structure of data collected from a set of secondary-school students’ responses to an NOS instrument comprising multiple-choice and Likert-scale items. Using multidimensional item response modeling to compare structures of NOS dimensionality, we found that treating NOS as comprising multiple dimensions—as defined by the themes in the NGSS NOS framework—resulted in a better fitting model than when treating NOS as a single dimension. The multidimensional model also had fewer poorly functioning items and revealed NOS profiles that otherwise would have been masked in a model treating NOS as a single dimension. These results provide support for the NOS NGSS framework and contribute to the ongoing discussion about the dimensionality of NOS.  相似文献   

20.
C.P.斯诺两种文化分裂命题的现代分析   总被引:2,自引:0,他引:2  
2 0世纪 5 0年代 ,英国学者C .P .斯诺在《两种文化》的演讲中指出 ,科技与人文正被割裂为两种文化 ,科技和人文知识分子正在分化为两个言语不通、社会关怀和价值判断迥异的群体 ,这必然会妨碍社会和个人的进步和发展。当前 ,两种文化的分裂非但没有缓解 ,反有愈演愈裂之势 ,主要表现为“科学主义”的盛行。要促成科技与人文的融合 ,首先应给科技一个准确的人文定位 ,破除对科技的盲目崇拜。在此基础上 ,对教育的重新审视是二者融合的希望所在  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号