首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文介绍解无理方程的八种方法,供读者参考。 一、观察法。不解方程,用算术根的概念及不等式的性质判断方程的解。 例1.解下列方程 (1)(2-x)~(1/2) (x-3)~(1/2)=4; (2)(x~2-6x 9)~(1/2) 解(1) 由 2-x≥0,x-3≥0有x≤2且x≥3,无解。 (2)(x~2-6x 9)~(1/2)=[(x-3)~2]~(1/2)=|x-3|。原方程为 |x-3|=x-3。 解为x≥3。  相似文献   

2.
用适当方法构造与原问题有关的方程,利用方程的知识使原题获解,此为“辅助方程法”。一、解方程(组) 例1 解关于x的方程 x~4 6x~3-2(a-3)x~2 2(3a 4)x 2a a~2=0 解:化为a的方程: a~2-2(x~2-3x-1)a (x~4-6x~3 6x~2 8x)=0解得a=x~2-4x,a=x~2-2x-2。故得原方程的解x_(1,2)=2±4~(1/2) a,x_(3,4)=1±(3 a)~(1/2)(注;a<-3时,有虚根)  相似文献   

3.
1.忽视方程的同解 例1 解方程:(x-1)(x-2)=x-1. 错解:两边除以(x-1),得 x-2=1,x=3. 评注:忽视了方程的同解,方程两边除以(x-1)就可能导致丢根x=1.为此,把原式整理成(x-1)(x-2-1)=0. ∴x_1=1,x_2=3为所求. 例2 解方程:(x a)/(x-b) (x b)/(x-a)=2. 错解:两边同乘以(x-b)(x-a),有 (x a)(x-a) (x b)(x-b) =2(x-a)(x-b), 即2(x-a)x=(a b)~2. ∴当a b≠0时,x=(a b)/2.  相似文献   

4.
首先让我们来看一道例题:例:解分式方程2x 1 x-31=x26-1①.解:方程两边都乘以(x 1)(x-1),得2(x-1) 3(x 1)=6.解这个整式方程,得x=1.检验:当x=1时,(x 1)(x-1)=0,∴x=1是增根,故原分式方程无解.从解方程的过程可以看到:为解分式方程,需要在①的两边都乘以最简公分母(x 1)(x-1),达  相似文献   

5.
一、忽略了对根的检验例1解方程:6/(x~2-1)-3/(x-1)=2/(x 1).错解:方程的两边同乘以最简公分母(x 1)(x-1),得6-3(x 1)=2(x- 1).解这个方程,得x=1.所以原方程的根是x=1.剖析:分式方程是通过转化为整式方程来求解的,解题过程中有可能产生增根,所以求出的根必须检验.正解:方程的两边同乘以最简公分母(x 1)(x-1),得6-3(x 1)=2(x- 1).解这个方程,得x=1.  相似文献   

6.
一、忽视斜率不存在的情形例1直线l过点P(2,1)且与直线y=3~(1/2)x 1的夹角为30°,求直线l的方程.错解:设直线l的斜率为k,则|(k-3~(1/2))/(1 3~(1/2)k)|=tan30°,解得k=(3~(1/2))/(3),故所求直线方程为y-1=(3~(1/2))/(3)(x-2),即3~(1/2)x- 3y 3-2 3~(1/2)=0.  相似文献   

7.
第一试一、解方程:(x+3)~(1/2)=|x-2|-1.解:先限定 x≥2:这时|x-2|=x-2,原方程化为(x+3)~(1/2)=x-3,x+3=x~2-6x+9,∴x~2-7x+6=0,(x-6)(x-1)=0,∴x_1=6,x_2=1(x_2不合我们的限定,舍  相似文献   

8.
我们知道,转化是解题过程的一个重要环节。如何实现转化呢?构造辅助方程可算一个有力的措施。下面通过若干例子加以说明。一、在代数求值中的应用 [例1] 求值:(20+14 2~(1/2))~(1/3)+(20-14 2~(1/2))~(1/3)。解:令原式=x,得辅助方程 x=(20+14 2~(1/2))~(1/3)+(20-14 2~(1/2))~(1/3) 立方,得x~3-6x-40=0 (x-4)(x~2+4x+10)=0 ∵x~2+4x+10>0 ∴x-4=0,x=4。故原式等于4。  相似文献   

9.
在中学数学中,对绝对值方程|x-α|±|x-β|=2m的求解,常采用“零点分段讨论法”,用这种方法比较繁琐。我们现通过例题介绍一种简洁方法。例1 解方程|x-1|+|x-3|=10. 解:原方程变形为 (((x-1)~2+O~2)~(1/2))+(((x-3)~2+O~2)~(1/2))=10。以y~2代换O~2,则 (((x-1)~2+y~2)~(1/2))+(((x-3)~2+y~2)~(1/2))=10。  相似文献   

10.
解无理方程,通常是采用两边平方的办法。但这样做往往要进行两次以上的平方,出现高次方程,给解方程带来困难。本文介绍另一种解法——“平方差法”。先看例1 解方程(x~2+x-2)~(1/2)-(x~2+x-5)~(1/2)=1 (1) 解:由恒等式((x~2+x-2)~(1/2))~2-((x~2+x-5)~(1/2))~2=3 (2) (2)÷(1)得(x~3+x-2)~(1/2)+(x~2+x-5)~(1/2)=3 (3) (1)+(3)化简得(x~2+x-2)~(1/2)=2 (4) 两边平方整理得x~2+x-6=0 解得x_1=2,x_2=-3。经检验知,x_1=2,x_2=-3都是原方程的根。用这种方法解无理方程,虽然避免了高次方程的出现,但是有可能遗根。请看例2 解方程(x~2+5x-6)~(1/2)+2=(x~2+x-2)~(1/2)+22~(1/2) 解:将原方程变形为(x~2+5x-6)~(1/2)-(x~2+x-2)~(1/2)  相似文献   

11.
各已知渐近线方程 f_1(x)=0,f_2(x)=0而不知双曲线方程类型情况下,求双曲线方程可通过设方程为f_1(x)·f_2(x)=λ(λ≠0)来确定.例1 求以4x-3y=0,4x 3y=0为渐近线方程且过 P(4 (3~(1/2),8)的双曲线方程.解:渐近线方程可变为(4x-3y)(4x 3y)=16x~2-9y~2=0  相似文献   

12.
平均值法是数学中常用的解题方法,本文拟介绍平均值法在分解因式中的应用,这往往是许多教师容易忽略的。例1 分解因式(x~2-2x)(x~2-2x-2)-3。解:x~2-2x与x~2-2x-2的平均值为M=x~2-2x-1。∴原式=(M+1)(M-1)-3=M~2-4=(M+2)(M-2)=(x~2-2x+1)(x~2-2x-3)=(x-1)~2(x+1)(x-3)。例2 分解因式 4(x+5)(x+6)(x+10)(x+12)-3x~2。  相似文献   

13.
<正>八年级上学期(人教版)学习了解分式方程,常常会遇到下列情况.例1解分式方程1/(x-5)=10/(x2-25).(1)解在方程两边乘最简公分母(x-5)(x+5)得到整式方程,x+5=10,(2)解之得x=5.将x=5代入原方程检验,发现这时分母x-5和x2-25).(1)解在方程两边乘最简公分母(x-5)(x+5)得到整式方程,x+5=10,(2)解之得x=5.将x=5代入原方程检验,发现这时分母x-5和x2-25的值都为0,相应的分式无意义.因此,x=5虽是整式方程x+5=10的解,  相似文献   

14.
转化是一种常见的有效的数学思想方法,根据问题的特点转化为易解决的新问题,本文仅通过解方程来说明这种方法的应用。例1 解方程:(x-2 2((x-3)~(1/2)))~(1/2) (x 1 4((x-3)~(1/2)))=5 解:原方程转化为:(((x-3)~(1/2) 1)~2)~(1/2) (((x-3)~(1/2) 2)~2)~(1/2)=5, ∴ (x-3)~(1/2)=1,∴ x=4 经检验:x=4是原方程的解例2 解方程(x~2 12x 99)~(1/2) (x~2-12x 99)~(1/2)=20 解:原方程转化为:((x 6)~2 63)~(1/2) ((x-6)~2 63)~(1/2)=20 设y~2=63,方程又可转化为:以(-6,0)、(6,0)为焦点,长轴2a=20的椭圆方程,易知2b=2((10~2-6~2)~(1/2))=16故椭圆方程为:x~2/10~2  相似文献   

15.
1.构造等式例 1.已知 x+ y+ z=3,求3(x- 1) (y- 1) (z- 1)(x- 1) 3 + (y- 1) 3 + (z- 1) 3 的值。解 :根据所求代数式的结构特征 ,可构造恒等式 :a3 + b3 + c3 - 3abc=(a+ b+ c) (a2 + b2 + c2 -ab- bc- ac)。设 a=x- 1,b=y- 1,c=z-1,有 a+ b+ c=x+ y+ z- 3=0。将上面三式代入恒等式得 :(x- 1) 3 + (y- 1) 3 + (z- 1) 3- 3(x- 1) (y- 1) (z- 1) =0 ,∴ 3(x- 1) (y- 1) (z- 1)(x- 1) 3 + (y- 1) 3 + (z- 1) 3=1。2 .构造不等式例 2 .实数 a、b、c、d满足 a+b+ c+ d=5 ,a2 + b2 + c2 + d2 =7,求 a的范围。解 :根据第一个等式的平方与第二个等…  相似文献   

16.
利用恒等式a(x_1 x_2)±x_1x_2=±(x_1±a)(x_2±a)±a~2求方程的整数解与证明条件不等式十分有效。例1 求方程x y-xy=324的整数解解原方程化为 -(x-1)(y-1) 1=324即(x-1)(y-1)=-323。∵ -323=(-1)×323=l×(-323) =(-17)×19=17×(-19)∴ (1){x-1=-1 y-1=323;(2){x-1=1 y-1=-323; (3){x-1=-17 y-1=19;(4){x-1=17 y-1=-19。解得: (1){x=0, y=324;(2){x=2, y=-322; (3){x=-16 y=20;(4){X=18 y=-18。注意到原方程是对称轮换方程,  相似文献   

17.
分式方程是每年各地中考的重要考点之一,但在解分式方程的过程中,常出现这样或那样的错误,下面举例归类剖析.一、忽视验根或验根不正确致错例1解方程x-2/x+2-x+2/x-2=16/x~2-4.错解1方程两边同乘(x+2)(x-2),得(x-2)~2-(x+2)~2=16.解这个方程,得x=-2,  相似文献   

18.
一元二次方程ax~2+bx+c=0(a≠0)是初中代数的一个重要内容之一,也是中考、各类竞赛考查的重要内容之一.同学们应全方位、多角度地诠释本节内容,下面就谈谈学习这部分内容应注意的几个问题,供参考.一、在解一元二次方程时,要善于选择合理、简捷的方法,不要轻易使用公式法例1选用适当的方法解下列方程:(1)2x~2-6=0;(2)(x-1)(x+2)=2(x+2);(3)x~2-5x-6=0;(4)x~2+x-1=0.分析方程2x~2-6=0缺少一次项,可采用直接开平方法求解;对于方程(x-1)(x+2)=2(x+2),可把  相似文献   

19.
在不等式证明中一个常用的绝对值不等式|a b|≤|a| |b|可推得如上两个结论: (Ⅰ)|a b|<|a| |b|ab<0, (Ⅱ)|a b|=|a| |b|ab≥0。这两个结论对解一些方程和不等式有事半功倍之效。例1 解方程 (x (2x-1)~(1/2))~(1/2) (x-(2x-1)~(1/2))~(1/2)=2~(1/2) (第一届国际中学生数学竞赛题) 解:将原方程两边乘以2~(1/2)得:(2x-1 2 (2x-1)~(1/2))~(1/2) 1 (2x-1-2 (2x-1)~(1/2))~(1/2) 1=2令y=(2x-1)~(1/2)(y≥0),则原方程可变为: ((y 1)~2)~(1/2) ((y-1)~2)~(1/2)=2即|y 1| |1-y|=2∵(y 1) (1-y)=2,根据(Ⅱ)得:(y 1)(1-y)≥0,∴-1≤y≤1。又y≥0,∴0≤y≤1即0≤(2x-1)~(1/2)≤1解之得1/2≤x≤1。  相似文献   

20.
利用因式分解进行分式的化简和计算,是中考中的常见题型,它不仅考查了同学们对因式分解的掌握情况,而且考查了计算能力.例1(广州市)计算:x2+2x-3/x2-9·x2-5x+6/3x2-x-2.解:原式=(x+3)(x-1)/(x+3)(x-3)·(x-2)(x-3)/(3x+2)(x-1)=x-2/3x+2.点评:本题将各多项式进行因式分解后,可以发现分子分母有公因式,约去公因式,即可达到化简的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号