首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microfluidic device with planar square electrodes is developed for capturing particles from high conductivity media using negative dielectrophoresis (n-DEP). Specifically, Bacillus subtilis and Clostridium sporogenes spores, and polystyrene particles are tested in NaCl solution (0.05 and 0.225 S∕m), apple juice (0.225 S∕m), and milk (0.525 S∕m). Depending on the conductivity of the medium, the Joule heating produces electrothermal flow (ETF), which continuously circulates and transports the particles to the DEP capture sites. Combination of the ETF and n-DEP results in different particle capture efficiencies as a function of the conductivity. Utilizing 20 μm height DEP chambers, “almost complete” and rapid particle capture from lower conductivity (0.05 S∕m) medium is observed. Using DEP chambers above 150 μm in height, the onset of a global fluid motion for high conductivity media is observed. This motion enhances particle capture on the electrodes at the center of the DEP chamber. The n-DEP electrodes are designed to have well defined electric field minima, enabling sample concentration at 1000 distinct locations within the chip. The electrode design also facilitates integration of immunoassay and other surface sensors onto the particle capture sites for rapid detection of target micro-organisms in the future.  相似文献   

2.
We describe the integration of an actively controlled programmable microfluidic sample processor with on-chip optical fluorescence detection to create a single, hybrid sensor system. An array of lifting gate microvalves (automaton) is fabricated with soft lithography, which is reconfigurably joined to a liquid-core, anti-resonant reflecting optical waveguide (ARROW) silicon chip fabricated with conventional microfabrication. In the automaton, various sample handling steps such as mixing, transporting, splitting, isolating, and storing are achieved rapidly and precisely to detect viral nucleic acid targets, while the optofluidic chip provides single particle detection sensitivity using integrated optics. Specifically, an assay for detection of viral nucleic acid targets is implemented. Labeled target nucleic acids are first captured and isolated on magnetic microbeads in the automaton, followed by optical detection of single beads on the ARROW chip. The combination of automated microfluidic sample preparation and highly sensitive optical detection opens possibilities for portable instruments for point-of-use analysis of minute, low concentration biological samples.  相似文献   

3.
Multi-target pathogen detection using heterogeneous medical samples require continuous filtering, sorting, and trapping of debris, bioparticles, and immunocolloids within a diagnostic chip. We present an integrated AC dielectrophoretic (DEP) microfluidic platform based on planar electrodes that form three-dimensional (3D) DEP gates. This platform can continuously perform these tasks with a throughput of 3 μL∕min. Mixtures of latex particles, Escherichia coli Nissle, Lactobacillus, and Candida albicans are sorted and concentrated by these 3D DEP gates. Surface enhanced Raman scattering is used as an on-chip detection method on the concentrated bacteria. A processing rate of 500 bacteria was estimated when 100 μl of a heterogeneous colony of 107 colony forming units ∕ml was processed in a single pass within 30 min.  相似文献   

4.
Song W  Psaltis D 《Biomicrofluidics》2011,5(4):44110-4411011
We present a novel image-based method to measure the on-chip microfluidic pressure and flow rate simultaneously by using the integrated optofluidic membrane interferometers (OMIs). The device was constructed with two layers of structured polydimethylsiloxane (PDMS) on a glass substrate by multilayer soft lithography. The OMI consists of a flexible air-gap optical cavity which upon illumination by monochromatic light generates interference patterns that depends on the pressure. These interference patterns were captured with a microscope and analyzed by computer based on a pattern recognition algorithm. Compared with the previous techniques for pressure sensing, this method offers several advantages including low cost, simple fabrication, large dynamic range, and high sensitivity. For pressure sensing, we demonstrate a dynamic range of 0-10 psi with an accuracy of ±2% of full scale. Since multiple OMIs can be integrated into a single chip for detecting pressures at multiple locations simultaneously, we also demonstrated a microfluidic flow sensing by measuring the differential pressure along a channel. Thanks to the simple fabrication that is compatible with normal microfluidics, such OMIs can be easily integrated into other microfluidic systems for in situ fluid monitoring.  相似文献   

5.
This work describes the development of a prototypic microfluidic platform for the generation of stepwise concentration gradients of drugs. A sensitive apoptotic analysis method is integrated into this microfluidic system for studying apoptosis of HeLa cells under the influence of anticancer drug, etoposide, with various concentrations in parallel; it measures the yellow fluorescent protein∕cyan fluorescent protein fluorescence resonance energy transfer (FRET) signal that responds to the activation of caspase-3, an indicator of cell apoptosis. Sets of microfluidic valves on the chip generate stepwise concentration gradient of etoposide in various cell-culture microchambers. The FRET signals from multiple chambers are simultaneously monitored under a fluorescent microscope for long-time observation and the on-chip results are compared with those from 96-well plate study and the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The microfluidic platform shows several advantages including high-throughput capacity, low drug consumption, and high sensitivity.  相似文献   

6.
This paper reports the improvement of rectification effects in diffuser∕nozzle structures with viscoelastic fluids. Since rectification in a diffuser∕nozzle structure with Newtonian fluids is caused by inertial effects, micropumps based on this concept require a relatively high Reynolds numbers and high pumping frequencies. In applications with relatively low Reynolds numbers, anisotropic behavior can be achieved with viscoelastic effects. In our investigations, a solution of dilute polyethylene oxide was used as the viscoelastic fluid. A microfluidic device was fabricated in silicon using deep reactive ion etching. The microfluidic device consists of access ports for pressure measurement, and a series of ten diffuser∕nozzle structures. Measurements were carried out for diffuser∕nozzle structures with opening angles ranging from 15° to 60°. Flow visualization, pressure drop and diodicity of de-ionized water and the viscoelastic fluid were compared and discussed. The improvement of diodicity promises a simple pumping concept at low Reynolds numbers for lab-on-a-chip applications.  相似文献   

7.
A simple and effective universal serial bus (USB) flash disk type microfluidic chip electrophoresis (MCE) was developed by using poly(dimethylsiloxane) based soft lithography and dry film based printed circuit board etching techniques in this paper. The MCE had a microchannel diameter of 375 μm and an effective length of 25 mm. Equipped with a conventional online electrochemical detector, the device enabled effectively separation of bovine serum albumin, lysozyme, and cytochrome c in 80 s under the ultra low voltage from a computer USB interface. Compared with traditional capillary electrophoresis, the USB flash disk type MCE is not only portable and inexpensive but also fast with high separation efficiency.  相似文献   

8.
随着半导体集成技术的发展,微处理器和存储器不断进步,敏感元件与信号处理电路有可能集成在同一芯片上,故智能传感器将成为现实。智能化传感器是一种带微处理器的,兼有信息检测、信息处理、信息记忆、逻辑思维与判断功能的传感器。以下重点探讨智能传感器的应用和发展。  相似文献   

9.
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf, which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor, so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm∕s. The actuation time is of the order of 10 ms.  相似文献   

10.
Blood analysis plays a major role in medical and science applications and white blood cells (WBCs) are an important target of analysis. We proposed an integrated microfluidic chip for direct and rapid trapping WBCs from whole blood. The microfluidic chip consists of two basic functional units: a winding channel to mix and arrays of two-layer trapping structures to trap WBCs. Red blood cells (RBCs) were eliminated through moving the winding channel and then WBCs were trapped by the arrays of trapping structures. We fabricated the PDMS (polydimethylsiloxane) chip using soft lithography and determined the critical flow velocities of tartrazine and brilliant blue water mixing and whole blood and red blood cell lysis buffer mixing in the winding channel. They are 0.25 μl/min and 0.05 μl/min, respectively. The critical flow velocity of the whole blood and red blood cell lysis buffer is lower due to larger volume of the RBCs and higher kinematic viscosity of the whole blood. The time taken for complete lysis of whole blood was about 85 s under the flow velocity 0.05 μl/min. The RBCs were lysed completely by mixing and the WBCs were trapped by the trapping structures. The chip trapped about 2.0 × 103 from 3.3 × 103 WBCs.  相似文献   

11.
Real-time detection, control, and sorting of microfluidic droplets   总被引:1,自引:0,他引:1  
We report the design and implementation of capacitive detection and control of microfluidic droplets in microfluidic devices. Integrated microfluidic chip(s) with detection∕control circuit enables us to monitor in situ the individual volume of droplets, ranging from nanoliter to picoliter, velocity and even composition, with an operation frequency of several kilohertz. Through electronic feedback, we are able to easily count, sort, and direct the microfluidic droplets. Potential applications of this approach can be employed in the areas of biomicrofluidic processing, microchemical reactions as well as digital microfluidics.  相似文献   

12.
It is difficult to mix two liquids on a microfluidic chip because the small dimensions and velocities effectively prevent the turbulence. This paper describes two 2-layer PDMS passive micromixers based on the concept of splitting and recombining the flow that exploits a self-rotated contact surface to increase the concentration gradients to obtain fast and efficient mixing. The designed micromixers were simulated and the mixing performance was assessed. The mixers have shown excellent mixing efficiency over a wide range of Reynolds number. The mixers were reasonably fabricated by multilayer soft lithography, and the experimental measurements were performed to qualify the mixing performance of the realized mixer. The results show that the mixing efficiency for one realized mixer is from 91.8% to 87.7% when the Reynolds number increases from 0.3 to 60, while the corresponding value for another mixer is from 89.4% to 72.9%. It is rather interesting that the main mechanism for the rapid mixing is from diffusion to chaotic advection when the flow rate increases, but the mixing efficiency has not obvious decline. The smart geometry of the mixers with total length of 10.25 mm makes it possible to be integrated with many microfluidic devices for various applications in μ-TAS and Lab-on-a-chip systems.  相似文献   

13.
In this work, we demonstrate an integrated, single-layer, miniature flow cytometry device that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a “microfluidic drifting” based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.e., forward scatter, side scatter, and fluorescence) from individual particles can be simultaneously detected. Experimental results indicate that the performance of our flow cytometry chip is comparable to its bulky, expensive desktop counterpart. The integration of on-chip 3D particle focusing with on-chip multi-parametric optical detection in a single-layer, mass-producible microfluidic device presents a major step towards low-cost flow cytometry chips for point-of-care clinical diagnostics.  相似文献   

14.
Rapid concentration and detection of bacteria in integrated chips and microfluidic devices is needed for the advancement of lab-on-a-chip devices because current detection methods require high concentrations of bacteria which render them impractical. We present a new chip-scale rapid bacteria concentration technique combined with surface-enhanced Raman scattering (SERS) to enhance the detection of low bacteria count samples. This concentration technique relies on convection by a long-range converging vortex to concentrate the bacteria into a packed mound of 200 μm in diameter within 15 min. Concentration of bioparticle samples as low as 104 colony forming units (CFU)∕ml are presented using batch volumes as large as 150 μl. Mixtures of silver nanoparticles with Saccharomyces cerevisiae, Escherichia coli F-amp, and Bacillus subtilis produce distinct and noticeably different Raman spectra, illustrating that this technique can be used as a detection and identification tool.  相似文献   

15.
Xie Q  Zhou Q  Xie F  Sang J  Wang W  Zhang HA  Wu W  Li Z 《Biomicrofluidics》2012,6(1):16502-165028
This paper introduced a wafer-scale fabrication approach for the preparation of nanochannels with high-aspect ratio (the ratio of the channel depth to its width). Edge lithography was used to pattern nanogaps in an aluminum film, which was functioned as deep reactive ion etching mask thereafter to form the nanochannel. Nanochannels with aspect ratio up to 172 and width down to 44 nm were successfully fabricated on a 4-inch Si wafer with width nonuniformity less than 13.6%. A microfluidic chip integrated with nanometer-sized filters was successfully fabricated by utilizing the present method for geometric-controllable nanoparticle packing.  相似文献   

16.
In this work, we demonstrate an integrated, single-layer, miniature flow cytometry device that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a "microfluidic drifting" based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.e., forward scatter, side scatter, and fluorescence) from individual particles can be simultaneously detected. Experimental results indicate that the performance of our flow cytometry chip is comparable to its bulky, expensive desktop counterpart. The integration of on-chip 3D particle focusing with on-chip multi-parametric optical detection in a single-layer, mass-producible microfluidic device presents a major step towards low-cost flow cytometry chips for point-of-care clinical diagnostics.  相似文献   

17.
Electroosmotic flow was studied in thin film microchannels with silicon dioxide and silicon nitride sidewalls formed using plasma-enhanced chemical vapor deposition (PECVD). A sacrificial etching process was employed for channel fabrication allowing for cross-sections with heights of 3 μm, ranging from 2 μm to 50 μm in width. Flow rates were measured for single channels and multichannel electroosmotic pump structures for pH levels ranging from 2.6 to 8.3, and zeta potentials were calculated for both silicon dioxide and silicon nitride surfaces. Flow rates as high as 0.086 μL∕min were measured for nitride multichannel pumps at applied electric fields of 300 V∕mm. The surface characteristics of PECVD nitride were analyzed and compared to more well-known oxide surfaces to determine the density of amine sites compared to silanol sites.  相似文献   

18.
We have developed a coaxial flow focusing geometry that can be fabricated using soft lithography in poly(dimethylsiloxane) (PDMS). Like coaxial flow focusing in glass capillary microfluidics, our geometry can form double emulsions in channels with uniform wettability and of a size much smaller than the channel dimensions. However, In contrast to glass capillary coaxial flow focusing, our geometry can be fabricated using lithographic techniques, allowing it to be integrated as the drop making unit in parallel drop maker arrays. Our geometry enables scalable formation of emulsions down 7 μm in diameter, in large channels that are robust against fouling and clogging.  相似文献   

19.
This paper presents a study of electrokinetic transport in single nanopores integrated into vertically stacked three-dimensional hybrid microfluidic∕nanofluidic structures. In these devices, single nanopores, created by focused ion beam (FIB) milling in thin polymer films, provide fluidic connection between two vertically separated, perpendicular microfluidic channels. Experiments address both systems in which the nanoporous membrane is composed of the same (homojunction) or different (heterojunction) polymer as the microfluidic channels. These devices are then used to study the electrokinetic transport properties of synthetic (i.e., polystyrene sulfonate and polyallylamine) and biological (i.e., DNA) polyelectrolytes across these nanopores using both electrical current measurements and confocal microscopy. Both optical and electrical measurements indicate that electro-osmotic transport is predominant over electrophoresis in single nanopores with d>180 nm, consistent with results obtained under similar conditions for nanocapillary array membranes.  相似文献   

20.
In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the choice or development of analog fluids that are adequate to replicate blood behavior at the microscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号