首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题目 :如图 1,梯形ABCD中 ,AD∥BC ,分别以两腰AB、CD为边向两边作正方形图 1ABGE和正方形DCHF ,设线段AD的垂直平分线l交线段EF于点M .求证 :点M为EF的中点 .(2 0 0 4,全国初中数学联赛 (B卷 ) )本文给出三种证法 .证法 1:如图 2 ,过A、D分别作PA、QD图 2垂直于AD ,分别交EF于  相似文献   

2.
本文将给出关于圆规直尺可作正五边形的一个证明。为论证所需,我们先来证明下列引理。引理:给出一条长度为1的线段,则用圆规直尺就可作长度为(5~(1/2)-1)/4的线段。证明:设AB=1。于是可作图如下(图1): 第一步:在点B上作垂直于AB的直线L。第二步:在直线L上作点C,D,使之BC=CD=AB。第三步:作延长线段AB的直线L′。第四步:以点A为中心,AD为半径作交L于E的圆。显然线段BE=5~(1/2)-1 第五步:把BE分成四等分,则每一等分的长度就是(5~(1/2)-1)/4。  相似文献   

3.
本文介绍证明线段相等的新方法——比例式法.用比例式法证明线段相等有以下几种类型:一、要证线段a=b,可先证a/b=b/a例1 已知:从△ABC的AB边上一点P作PQ//BC,交AC于Q;从Q作QR//AB,交BC于R;从R作CA的平行线,恰好过P点.求证:P是AB的中点.分析 如图1,要证AP=PB,可从关于AP、PB的比例式着手.由PQ//BC,PR//AC知道AP:PB=AQ:QC,PB:PA=BR:RC.而QR//AB,则AQ:QC=BR:RC,故得AP:PB=PB:AP.∴AP=PB.即P是AB的中点.  相似文献   

4.
本期问题初173如图1,在正方形ABCD中,以图1点A为圆心、AB为半径画弧BD交AC于E,⊙O1与AB、AD相切且与BD内切,⊙O2与CB、CD相切且与BD外切,过点E作⊙O1的切线PE交CD于P.求证:∠APO1=∠CPO2.初174已知ABCD是一个正方形,点M(异于点B、C)在边BC上,线段AM的垂直平分线l分别交AB、CD于点E、F.(1)问:BE与DF谁更长?请说明理由.(2)若AB=1,求|BE-DF|的取值范围(点M取遍线段BC内部的每一个点).高173已知x、y、z∈R+,x+y+z=1.求证:x12-xy12-yz12-z≥2363.高174设S={1,2,…,n}.求最小自然数n,使当任意将S划分成两个子集时,总…  相似文献   

5.
中学几何中,有一类关于证明1/a 1/b=t/c型线段关系式的题目,这类问题的解决,一般地归结为寻求c/a和c/b的具有公分母的“第三比例式”,这里再介绍两种方法。 一、将1/a 1/b=t/c型化为e/f=h/g型解决(其中a,b,c,t,e,f,h,g都是线段) 例1.BF是△ABC中∠ABC的平分线,过F作EF∥BC交AB于E,则1/AB 1/BC=1/BE。  相似文献   

6.
<正>1问题展示问题如图1,正六边形ABCDEF的边长为a,P是边BC上一动点,过P作PM∥AB交AF于点M,作PN∥CD交DE于点N,(1)1∠MPN=°;2求证:PM+PN=3a;(2)如图2,点O为线段AD的中点,连接OM、ON,求证:OM=ON;  相似文献   

7.
证明线段相等有许多种常用的方法 ,但人们往往忽略利用构造相似等腰三角形的证明方法 .实际上 ,利用构造相似等腰三角形的方法证明线段相等是一种常常奏效的方法 .采用这种方法证明线段相等 ,构造适宜的等腰三角形是解题的关键 .下面举例说明这种证明方法 .例 如图 1 ,已知点E是正方形ABCD中一点 ,∠EBC =∠ECB =1 5°.求证 :△AED是正三角形 .图 1图 2分析 :欲证△AED是正三角形 ,只须证明DE =DC .参考图 1作出与△DEC相似的等腰三角形 ,问题即可得到解决 .证法 1 :如图 2 ,作∠CEH =∠ECB ,作EG⊥BC ,交BC于M且EM =MG .…  相似文献   

8.
本刊于94年第7期上曾讨论了不等式“设X≥0,求证 (2 x)/(1 x)((1/2)(1 x)~2)≥2((1/2)2)。”的几种证法。现通过构造图形再给出两个证法。 证法1 如图,构造边长为2的正方形ABCD,点O是中心,延长BC至点E,设CE=x,过E,O的直线交AB于点N,过点O作OM∥AB,交BC于点M,取EN的中点F,连结BF和BO。易知EM=1 x,EB=2 x,OM=1,OB=(1/2),EO=(1/2)(1 (1 x)~2,BF=1/2EN。∵OM∥NB,∴EM/EB=EO/EN,即(1 x)/(2 x)=((1/2)(1 (1 x)~2))/EN。  相似文献   

9.
本文给出高中《代数》下册中一道不等式习题的一种构造法证明 .原题如下 :求证 :a - a- 1相似文献   

10.
题目如图1,在△ABC中,AB=AC,M是BC的中点,D、E、F分别是BC、CA、AB上的点,且AE=AF,△AEF的外接圆交线段AD于点P.若点P满足PD~2=PE·PF,证明:  相似文献   

11.
我们都知道,数学知识能解决物理、化学中的许多问题.同样,利用物理知识也能解决数学问题.杠杆平衡原理求线段的比就是一例.一、引理如图1,在△ABC中,若线段AD交BC于D,且BD∶DC=m∶n,CE交AB于E,交AD于F,且AE∶EB=p∶q,则线段AF∶FD=p(m+n)∶nq;CF∶FE=n(p+q)∶pm.分析:我们把图中的每条线段都看成轻质杠杆,而把分点看成杠杆的支点,这样图中就出现了以点D为支点的杠杆BC,以点E为支点的杠杆AB,以点F为支点的杠杆AD及CE.证明:设落在点B的重量为G,对杠杆BC,由杠杆原理可得落在C点的重量为mG/n,对杠杆BA,由杠杆原理得落在点A…  相似文献   

12.
<正>1 结论如图1,双曲线y=k/x(k>0,x> 0)经过矩形OABC的边AB的中点M,与边BC交于点N,直线MN交x轴于点F,交y轴于点E,则EN=MN=MF(即点M、N为线段EF的三等分点).我们暂且称之为"三等分定理".证明连接OB,因为四边形OABC是矩形,所以  相似文献   

13.
引理已知AD∥BC,AB交CD于点N,AC交BD于点M,过点M的直线PQ∥AD,点P、Q分别在直线AB、CD上.则有2NP=1NA 1NB.其中NP、NA、NB规定为有向线段的长.证明:如图1.图1由MPDA=BPBA=CQCD=QMDA,有MP=QM.即M为PQ的中点.设直线MN分别交AD、BC于G、F.则AGPM=NGNM=GDMQ.故G为AD的中点.同理,F为  相似文献   

14.
1.证明线段成比例 例1 在△ABC中,∠BAC=90°,AD⊥C,∠ABC的平分线交AD于F,交AC于E,求证:DF:FA=AE:EC.(初中《几何》第二册总复习题18题)。 思路:如图1,由本题结论特点,可寻找第三个比:分别在△ABD和△ABC中应用三角形内角平分线定理,得DF/FA=BD/AB和AE/EC=AB/BC.如果BD/AB与AB/BC相等,问题即解决。由直角三角形比例中项定理可得AB~2=BD×BC,即BD/AB=AB/BC.  相似文献   

15.
例1 如图,Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交AC于D,作CE⊥BD交BD的延长线于E,过A作AH⊥BC交BD于M,交BC于H,则BM与CE的大小关系是_______ . (第9届“希望杯”初二2试)  相似文献   

16.
关于“平行线分线段成比例定理”的教学 ,初中《几何》教材[1] [2 ] 都是采用举例引入而不予证明的方式编排的 .为什么不给出证明呢 ?据说是因为证明涉及无理数理论、极限思想等 ,学生尚不能接受[3] .下面给出一个无须涉及无理数理论、极限思想的证明 ,供教学时参考 .定理 如图 1 ,△ABC中 ,若DE∥BC ,则 DEBC =ADAB=AEAC=MNMC(其中MN和MC分别是△ADE和△ABC的高 ) .证明 如图 1所示 ,构造 AFBC ,过D作GE∥BC ,过D作HK∥AC ,过C作CM⊥直线FA ,垂足为点M ,而交直线GE于点N .∵S△AFB=S△ABC,S△AHD=S△ADE,S…  相似文献   

17.
学习了三角形全等的判定以后,可以利用全等三角形的性质(全等三角形的对应边相等,对应角相等)解决许多类型的几何问题,如下面几例.一、证明线段相等例1在△凸ABC中,∠BAC=90°,∠ABC的平分钱交AC于E,交BC边上的高于D,过D作直线平行于BC交AC于F.求证:AE=CF.证明如图1,作DM⊥AB交AB于M,作FN⊥EC交BC于N.∵BE是∠B的平分线.二、证明角相等例2如图2,已知AC=AB,DE=DB,∠CAD=∠EDA=60°.求证:∠AFB=∠BGC证明∵AC=AB,DE=DB,又∠CAD=∠EDA=60°,..bABC和凸BDE都是等边三角…  相似文献   

18.
初41.对任意自然数n,连结原点O和点A(n,n 3),用f(n)表示线段OA_n上除端点外的整点的个数。试求:f(1) f(2) … f(1996)。 (李丽琴 河南省交通学校,450052) 初42.在△ABC中,AB=37,AC=58,以A为圆心,AB长为半径作弧交BC于点D,且D在B,C之间。若BD与DC长均为整数,求BC的长。  相似文献   

19.
神秘的“黄金分割”   总被引:1,自引:0,他引:1  
一、“黄金分割”的由来很久以前古希腊学者欧多克斯(公元前 4 0 8~ 335)最早提出 :能否把一条线段分成两段 ,使其中较长的线段是原线段与较短线段的比例中项 ?人们经过反复的实践探索解决了这一问题。如图所示 ,取线段 AB,作CB⊥ AB使 BC=12 · AB,连 AC在 AC上取 CD =BC,在 AB上取 AE=AD,则 AE2 =AB· BE,下面用勾股定理证明这一结论。证明 :∵AC2 =AB2 BC2  ( AD DC) 2 =AB2 BC2∵ AD =AE  BC=12 · AB∴有 AE2 AE·AB- AB2 =0 ( * )∴ AE2 =AB ( AB- A E)=AB· BE人们把这个比称为“中外比”,后来…  相似文献   

20.
2004年全国初中数学联赛第二试第2题:已知:如图1,梯形ABCD中,AD∥BC,以两腰AB,CD为一边分别向两边作正方形ABGE和脚,设线段AD的垂直平分线l交线段EF于M.求证:点M是EF的中点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号