首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compliance of a badminton racket is an important design consideration, which can be better understood by studying the deflection behaviour of the racket during a stroke. Deflection can be measured using direct methods, such as motion capture or high speed video, or by indirect methods, which then require a mathematical model in order to calculate the deflections from indirect measures. Indirect methods include strain gauges and accelerometers. Here, racket deflection is measured directly using motion capture and compared with deflections calculated from strain gauge data using a beam model. While the elastic behaviour is better calculated from strains than measured by motion capture, it is not possible to extract the whole motion of the racket from strain data. Motion capture is therefore also necessary to determine the rigid body velocity, in order to put the elastic velocity (as calculated from strains) in perspective.  相似文献   

2.
Abstract

The deflection profiles of a badminton racket during strokes performed by elite and world-class badminton players were recorded by strain gauges and subsequently analysed to determine the role of shaft stiffness in racket performance. Deflection behaviour was consistent in all strokes across all players, suggesting a controlled use of racket elasticity. In addition, all impacts occurred within 100 ms of each other, a duration in which deflection velocity provides an increase in racket velocity, indicating that the players were able to use racket elasticity to their advantage. Since deflection behaviour is a product of the racket–player interaction, further work is required to determine the effects of different racket properties and player techniques on the elastic response of rackets during strokes.  相似文献   

3.
The kinematics of a badminton racket during a smash stroke was observed in this study with the purpose of investigating stroke dynamics and racket behaviour. Motion capture measurements of the racket during several smash strokes performed by three players of different skill levels indicated a clear increase in racket velocity at impact with increasing skill level. Variations between translational and rotational contributions to the impact speed could also be seen between the players. The advanced player produced a much higher peak angular velocity and also relied much less on translation, with a translational velocity of only 8% of the total velocity versus the 20% for the recreational player. It is proposed that, as an alternative to shuttlecock speeds, racket head speed measurements can be used as an indicator of performance, and can also provide some insight into the interaction between the racket and player.  相似文献   

4.
In order to measure active drag during front crawl swimming a system has been designed, built and tested. A tube (23 m long) with grips is fixed under the water surface and the swimmer crawls on this. At one end of the tube, a force transducer is attached to the wall of the swimming pool. It measures the momentary effective propulsive forces of the hands. During the measurements the subjects’ legs are fixed together and supported by a buoy. After filtering and digitizing the electrical force signal, the mean propulsive force over one lane at constant speeds (ranging from about 1 to 2 m s‐1) was calculated. The regression equation of the force on the speed turned out to be almost quadratic. At a mean speed of 1.55 m s‐1 the mean force was 66.3 N. The accuracy of this force measured on one subject at different days was 4.1 N. The observed force, which is equal to the mean drag force, fits remarkably well with passive drag force values as well as with values calculated for propulsive forces during actual swimming reported in the literature. The use of the system does not interfere to any large extent with normal front crawl swimming; this conclusion is based on results of observations of film by skilled swim coaches. It was concluded that the system provides a good method of studying active drag and its relation to anthropometric variables and swimming technique.  相似文献   

5.
Measurement of active drag during crawl arm stroke swimming   总被引:2,自引:0,他引:2  
In order to measure active drag during front crawl swimming a system has been designed, built and tested. A tube (23 m long) with grips is fixed under the water surface and the swimmer crawls on this. At one end of the tube, a force transducer is attached to the wall of the swimming pool. It measures the momentary effective propulsive forces of the hands. During the measurements the subjects' legs are fixed together and supported by a buoy. After filtering and digitizing the electrical force signal, the mean propulsive force over one lane at constant speeds (ranging from about 1 to 2 m s-1) was calculated. The regression equation of the force on the speed turned out to be almost quadratic. At a mean speed of 1.55 m s-1 the mean force was 66.3 N. The accuracy of this force measured on one subject at different days was 4.1 N. The observed force, which is equal to the mean drag force, fits remarkably well with passive drag force values as well as with values calculated for propulsive forces during actual swimming reported in the literature. The use of the system does not interfere to any large extent with normal front crawl swimming; this conclusion is based on results of observations of film by skilled swim coaches. It was concluded that the system provides a good method of studying active drag and its relation to anthropometric variables and swimming technique.  相似文献   

6.
The major racket sports include badminton, squash, table tennis and tennis. The growth of sports science and the commercialization of racket sports in recent years have focused attention on improved performance and this has led to a more detailed study and understanding of all aspects of racket sports. The aim here, therefore, is to review recent developments of the application of science to racket sports. The scientific disciplines of sports physiology and nutrition, notational analysis, sports biomechanics, sports medicine, sports engineering, sports psychology and motor skills are briefly considered in turn. It is evident from these reviews that a great deal of scientific endeavour has been applied to racket sports, but this is variable across both the racket sports and the scientific disciplines. A scientific approach has helped to: implement training programmes to improve players' fitness; guide players in nutritional and psychological preparation for play; inform players of the strategy and tactics used by themselves and their opponents; provide insight into the technical performance of skills; understand the effect of equipment on play; and accelerate the recovery from racket-arm injuries. Racket sports have also posed a unique challenge to scientists and have provided vehicles for developing scientific methodology. Racket sports provide a good model for investigating the interplay between aerobic and anaerobic metabolism and the effect of nutrition, heat and fatigue on performance. They have driven the development of mathematical solutions for multi-segment interactions within the racket arm during the performance of shots, which have contributed to our understanding of the mechanisms of both performance and injury. They have provided a unique challenge to sports engineers in relation to equipment performance and interaction with the player. Racket sports have encouraged developments in notational analysis both in terms of analytical procedures and the conceptualization of strategy and tactics. Racket sports have provided a vehicle for investigating fast interceptive actions, hand-eye coordination and perception-action coupling in the field of motor control. In conclusion, science has contributed considerably to our knowledge and understanding of racket sports, and racket sports have contributed to science by providing unique challenges to researchers.  相似文献   

7.
Abstract

In this study, we examined the development of skill competence and tactical knowledge of 41 eighth-grade students (mean age 13.6 years) as they completed a season of badminton conducted following the features of Sport Education. Using data from students’ performance on badminton skills tests, their competence in game play, and their tactical knowledge, it was determined that these students made significant improvements in their ability to not only control the shuttle, but also to hit it more aggressively. This resulted in improvements in both the selection (what shot to make) and execution (ability to produce the desired shot) dimensions of their game play. In addition, the students demonstrated significant improvements in their ability to select tactical solutions and make arguments for those decisions when watching videotaped performances of badminton games. The key explanation for the development of competence in this setting was that the structure of the Sport Education season allowed for significant practice opportunities, and that the authenticity and consequential nature of the game play helped move all but weak novice students from a more cooperative version of net-game play to one where tactical decision making and execution was valued.  相似文献   

8.
在击球时,乒乓球拍会产生一定的形变,其形变的大小反映了球拍受力的大小.运用动态应变测试系统测量了不同技术击球时球拍拍柄根部应变力的大小,结果表明:采用摩擦击球的方式击球,球拍形变幅度较大,获得的形变力也较大;撞击球的方式击球,球拍形变幅度小,震动较大,球拍击球瞬间所受的作用力时间相对较短.  相似文献   

9.
The aims of this study were to establish the temporal-spatial relationship between muscle activity and the smash stroke of skilled badminton players and to assess performance accuracy using the ellipse of constant distance. We recorded the surface electromyographic (EMG) activity of selected superficial muscles of the stroking arm and shoulder--flexor carpi ulnalis, extensor carpi radialis, triceps brachii (lateral head), biceps brachii and trapezius (upper)--during the badminton smash. In the first part of the study, we examined the characteristics of muscle function and performance accuracy of skilled and unskilled individuals during the badminton smash. Five well-trained badminton players and five students with no experience of badminton were asked to smash a shuttle as hard as they could towards a vertical square target 4 m away, repeating the stroke 30 times. In general, the skilled players showed a more constant time from peak electromyographic amplitude to impact. Immediately after impact, the electromyographic activity of the triceps brachii and flexor carpi radialis of the skilled players decreased; in the unskilled participants, however, it continued until well after impact. The area of the ellipse of constant distance and the off-target distance, which were used as indices of performance accuracy, were smaller for the skilled than for the unskilled participants. In the second part of the study, one skilled and one unskilled participant performed 100 trials a day for 6 days. The time from peak electromyographic amplitude to impact in the extensor carpi radialis and flexor carpi ulnalis was more variable in the unskilled than in the skilled participant even after 6 days of practice, but the proximal muscles of the unskilled participant had a similar pattern of activity to that of the skilled player. Thus, controlling the distal muscles appears to be important for achieving accurate performance of the smash in badminton.  相似文献   

10.
Modern tennis rackets are manufactured from composite materials with high stiffness-to-weight ratios. In this paper, a finite element (FE) model was constructed to simulate an impact of a tennis ball on a freely suspended racket. The FE model was in good agreement with experimental data collected in a laboratory. The model showed racket stiffness to have no influence on the rebound characteristics of the ball, when simulating oblique spinning impacts at the geometric stringbed centre. The rebound velocity and topspin of the ball increased with the resultant impact velocity. It is likely that the maximum speed at which a player can swing a racket will increase as the moment of inertia (swingweight) decreases. Therefore, a player has the capacity to hit the ball faster, and with more topspin, when using a racket with a low swingweight.  相似文献   

11.
The aims of this study were to establish the temporal-spatial relationship between muscle activity and the smash stroke of skilled badminton players and to assess performance accuracy using the ellipse of constant distance. We recorded the surface electromyographic (EMG) activity of selected superficial muscles of the stroking arm and shoulder - flexor carpi ulnalis, extensor carpi radialis, triceps brachii (lateral head), biceps brachii and trapezius (upper) - during the badminton smash. In the first part of the study, we examined the characteristics of muscle function and performance accuracy of skilled and unskilled individuals during the badminton smash. Five welltrained badminton players and five students with no experience of badminton were asked to smash a shuttle as hard as they could towards a vertical square target 4 m away, repeating the stroke 30 times.In general, the skilled players showed a more constant time from peak electromyographic amplitude to impact. Immediately after impact, the electromyographic activity of the triceps brachii and flexor carpi radialis of the skilled players decreased; in the unskilled participants, however, it continued until well after impact. The area of the ellipse of constant distance and the off-target distance, which were used as indices of performance accuracy, were smaller for the skilled than for the unskilled participants. In the second part of the study, one skilled and one unskilled participant performed 100 trials a day for 6 days. The time from peak electromyographic amplitude to impact in the extensor carpi radialis and flexor carpi ulnalis was more variable in the unskilled than in the skilled participant even after 6 days of practice, but the proximal muscles of the unskilled participant had a similar pattern of activity to that of the skilled player. Thus, controlling the distal muscles appears to be important for achieving accurate performance of the smash in badminton.  相似文献   

12.
BackgroundThis study presents a kinematic analysis of an acute lateral ankle sprain incurred during a televised badminton match. The kinematics of this injury were compared to those of 19 previously reported cases in the published literature.MethodsFour camera views of an acute lateral ankle sprain incurred during a televised badminton match were synchronized and rendered in 3-dimensional animation software. A badminton court with known dimensions was built in a virtual environment, and a skeletal model scaled to the injured athlete's height was used for skeletal matching. The ankle joint angle and angular velocity profiles of this acute injury were compared to the summarized findings from 19 previously reported cases in the published literature.ResultsAt foot strike, the ankle joint was 2° everted, 33° plantarflexed, and 18° internally rotated. Maximum inversion of 114° and internal rotation of 69° was achieved at 0.24 s and 0.20 s after foot strike, respectively. After the foot strike, the ankle joint moved from an initial position of plantarflexion to dorsiflexion—from 33° plantarflexion to 53° dorsiflexion (range = 86°). Maximum inversion, dorsiflexion, and internal rotation angular velocity were 1262°/s, 961°/s, and 677°/s, respectively, at 0.12 s after foot strike.ConclusionA forefoot landing posture with a plantarflexed and internally rotated ankle joint configuration could incite an acute lateral ankle sprain injury in badminton. Prevention of lateral ankle sprains in badminton should focus on the control and stability of the ankle joint angle during forefoot landings, especially when the athletes perform a combined lateral and backward step.  相似文献   

13.
This study investigated whether an increase in the forefoot bending stiffness of a badminton shoe would positively affect agility, comfort and biomechanical variables during badminton-specific movements. Three shoe conditions with identical shoe upper and sole designs with different bending stiffness (Flexible, Regular and Stiff) were used. Elite male badminton players completed an agility test on a standard badminton court involving consecutive lunges in six directions, a comfort test performed by a pair of participants conducting a game-like practice trial and a biomechanics test involving a random assignment of consecutive right forward lunges. No significant differences were found in agility time and biomechanical variables among the three shoes. The players wearing the shoe with a flexible forefoot outsole demonstrated a decreased perception of comfort in the forefoot cushion compared to regular and stiffer conditions during the comfort test (p < 0.05). The results suggested that the modification of forefoot bending stiffness would influence individual perception of comfort but would not influence performance and lower extremity kinematics during the tested badminton-specific tasks. It was concluded that an optimisation of forefoot structure and materials in badminton shoes should consider the individual’s perception to maximise footwear comfort in performance.  相似文献   

14.
Effect of tennis racket parameters on a simulated groundstroke   总被引:1,自引:0,他引:1  
Composite materials have given manufacturers the freedom to develop a broad range of tennis rackets, allowing them to change key parameters such as the structural stiffness, mass, and position of the balance point. The aim of this research was to determine how changing these parameters could affect ball resultant rebound velocity and spin for a simulated groundstroke. A finite element model of a freely suspended racket and strings was used to determine the effect of racket parameters for oblique spinning impacts at a range of locations on the stringbed. The finite element simulations were conducted in the laboratory frame of reference, where the ball is projected onto an initially stationary racket. The mean rebound velocity of the ball was 9% higher for a structurally stiff racket, 37% higher for a heavy racket, and 32% higher for a head-heavy racket. In addition, the mean rebound topspin of the ball was 23% higher for a heavy racket and 21% higher for a head-heavy racket. Therefore, in relation to a groundstroke with an impact location away from the node, the rebound velocity of the ball is likely to increase with the structural stiffness of a racket. The effect of changing the mass and position of the balance point is more complex, as it is dependent on the relationship between the transverse moment of inertia and maximum pre-impact swing velocity.  相似文献   

15.
对4名现役优秀女子横拍反手生胶打法运动员接发球技术进行统计分析,结果显示:4名运动员反手接发球的比例高达93.2%~100%,其命中率高达82.9%~98.0%,但其直接得失分率都很低,分别为0~7.3%和2.0%~17.1%.在处理台内球的技术应用中,弹击技术的使用率均为零,接发球落点位置50%以上都在对方反手位,落点在对方正手位的比例均为零.因此,这几名运动员反手接发球使用率高,侧身正手接发球使用率却很低.反手接发球失误少,但很难直接得分.  相似文献   

16.
17.
Magnetic-inertial measurement units (MIMUs) are becoming more prevalent in sports biomechanics and may be a viable tool to evaluate kinematic parameters. This study examined the accuracy of a MIMU to estimate orientation angles under static conditions and dynamically from a squash racket during a forehand drive shot. A MIMU was mounted onto a goniometer and moved through 0–90°, with static data collected at 10° increments during 10 repetitions of all three axes. Typical error analyses showed the MIMU to be very reliable (TE ≤ 0.03°). MIMU accuracy was determined via intraclass correlation coefficients (ICC) (r > 0.999, p < 0.001). An ordinary least products regression showed no proportional bias and minimal fixed bias for all axes. Dynamic accuracy was assessed by comparing MIMU and optical motion capture data of squash racket swing kinematics. A MIMU was fixed onto a racket and 10 participants each hit 10 forehand shots. Mean orientation angle error at ball impact was <0.50° and ICC showed very high correlations (r ≥ 0.988, p < 0.001) for all orientations. Swing phase root mean squared errors were ≤2.20°. These results indicate that a MIMU could be used to accurately and reliably estimate selected racket swing kinematics.  相似文献   

18.
The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.  相似文献   

19.
羽毛球竞赛女双项目的制胜规律   总被引:3,自引:0,他引:3  
杨新芳  许伟民 《体育学刊》2005,12(2):102-104
在羽毛球界传统观念中,没有正确认识技术风格与制胜规律的关系,因而推导出现代女双正朝着“拉开、调动突击”方向发展的论断。分析两对奥运会女双冠军的一场经典比赛的技术数据,并借鉴男双项目的发展规律,深入探讨女双项目的制胜规律:(1)中国特色的羽毛球技术风格,无论单打、双打,集中体现在“快、狠、准、活”4个字上。其中“快”字为核心,其它3个方面都是“快”的具体表现。对于不同的单项,“快”的具体表现不同。(2)1978年羽毛球训练工作会议所提出的“快、狠、平、近、压”的双打指导思想是对技术风格的一个不完整表述。(3)羽毛球项目制胜的核心因素是“快”,影响“快”的因素有“狠、准、活”。三者统一在“快”的基础上,在综合形成“快”的过程中,表现出总和律、突前律和更迭律。女双项目同样遵循这一规律。  相似文献   

20.
Camera techniques are typically used in the study of human movement. However, as the number of joints and markers involved in a study increases, data extraction and calculation become increasingly tedious and complicated. To overcome this challenge, we propose a method of study that simplifies data extraction and calculation by using an electrogoniometer and dual Euler angles. The contribution of the rotation of each arm segment to produce a racket head’s speed was identified in the context of a badminton smash. The contribution of each segment rotation was computed using dual velocity analysis. A set of orthogonal Cartesian frames was established for computing the anatomical rotational velocities for each of the three segments of the upper arm. Electrogoniometers were attached to the subjects during the execution of the smash to obtain measurements of joint angles throughout the motion. To test the algorithm, the calculated velocity of the racket head was compared to the measured velocity. The calculated velocity was derived from an algorithm, while the measured velocity was obtained from a video image. The results are similar, indicating that the dual velocity method is suitable for determining segmental velocities in such kinematic situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号